differential expression

Yang R, Santos Garcia D, Pérez Montaño F, Da Silva GM, Zhao M, Jiménez Guerrero I, Rosenberg T, Chen G, Plaschkes I, Morin S, Walcott R, Burdman S. Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species [Internet]. Front Microbiol 2019;10:1400.Available from: https://pubmed.ncbi.nlm.nih.gov/31281298 PubMed
Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat to cucurbit crop production worldwide. Based on genetic and phenotypic properties, A. citrulli strains are divided into two major groups: group I strains have been generally isolated from melon and other non-watermelon cucurbits, while group II strains are closely associated with watermelon. In a previous study, we reported the genome of the group I model strain, M6. At that time, the M6 genome was sequenced by MiSeq Illumina technology, with reads assembled into 139 contigs. Here, we report the assembly of the M6 genome following sequencing with PacBio technology. This approach not only allowed full assembly of the M6 genome, but it also revealed the occurrence of a ∼53 kb plasmid. The M6 plasmid, named pACM6, was further confirmed by plasmid extraction, Southern-blot analysis of restricted fragments and obtention of M6-derivative cured strains. pACM6 occurs at low copy numbers (average of ∼4.1 ± 1.3 chromosome equivalents) in A. citrulli M6 and contains 63 open reading frames (ORFs), most of which (55.6%) encoding hypothetical proteins. The plasmid contains several genes encoding type IV secretion components, and typical plasmid-borne genes involved in plasmid maintenance, replication and transfer. The plasmid also carries an operon encoding homologs of a Fic-VbhA toxin-antitoxin (TA) module. Transcriptome data from A. citrulli M6 revealed that, under the tested conditions, the genes encoding the components of this TA system are among the highest expressed genes in pACM6. Whether this TA module plays a role in pACM6 maintenance is still to be determined. Leaf infiltration and seed transmission assays revealed that, under tested conditions, the loss of pACM6 did not affect the virulence of A. citrulli M6. We also show that pACM6 or similar plasmids are present in several group I strains, but absent in all tested group II strains of A. citrulli.
Yanay N, Elbaz M, Konikov-Rozenman J, Elgavish S, Nevo Y, Fellig Y, Rabie M, Mitrani-Rosenbaum S, Nevo Y. Pax7, Pax3 and Mamstr genes are involved in skeletal muscle impaired regeneration of dy2J/dy2J mouse model of Lama2-CMD [Internet]. Hum Mol Genet 2019;28:3369-3390.Available from: https://pubmed.ncbi.nlm.nih.gov/31348492 PubMed
Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology. This study is the first report of dy2J/dy2J model whole transcriptome profile. RNA-Seq of the mdx mouse model of DMD and wild-type (WT) mouse was carried as well in order to enable a novel comparison of dy2J/dy2J to mdx. A large group of shared differentially expressed genes (DEGs) was found in dy2J/dy2J and mdx models (1834 common DEGs, false discovery rate [FDR] < 0.05). Enrichment pathway analysis using ingenuity pathway analysis showed enrichment of inflammation, fibrosis, cellular movement, migration and proliferation of cells, apoptosis and necrosis in both mouse models (P-values 3E-10-9E-37). Via canonical pathway analysis, actin cytoskeleton, integrin, integrin-linked kinase, NF-kB, renin-angiotensin, epithelial-mesenchymal transition, and calcium signaling were also enriched and upregulated in both models (FDR < 0.05). Interestingly, significant downregulation of Pax7 was detected in dy2J/dy2J compared to upregulation of this key regeneration gene in mdx mice. Pax3 and Mamstr genes were also downregulated in dy2J/dy2J compared to WT mice. These results may explain the distinct disease course and severity in these models. While the mdx model at that stage shows massive regeneration, the dy2J/dy2J shows progressive dystrophic process. Our data deepen our understanding of the molecular pathophysiology and suggest new targets for additional therapies to upregulate regeneration in Lama2-CMD.
Vinograd-Byk H, Renbaum P, Levy-Lahad E. Vrk1 partial Knockdown in Mice Results in Reduced Brain Weight and Mild Motor Dysfunction, and Indicates Neuronal VRK1 Target Pathways. Sci Rep 2018;8:11265.
Mutations in Vaccinia-related kinase 1 (VRK1) have emerged as a cause of severe neuronal phenotypes in human, including brain developmental defects and degeneration of spinal motor neurons, leading to Spinal Muscular Atrophy (SMA) or early onset Amyotrophic Lateral Sclerosis (ALS). Vrk1 gene-trap partial Knockout (KO) mice (Vrk1(GT3/GT3)), which express decreased levels of Vrk1, are sterile due to impaired gamete production. Here, we examined whether this mouse model also presents neuronal phenotypes. We found a 20-50% reduction in Vrk1 expression in neuronal tissues of the Vrk1(GT3/GT3) mice, leading to mild neuronal phenotypes including significant but small reduction in brain mass and motor (rotarod) impairment. Analysis of gene expression in the Vrk1(GT3/GT3) cortex predicts novel roles for VRK1 in neuronal pathways including neurotrophin signaling, axon guidance and pathways implicated in the pathogenesis of ALS. Together, our studies of the partial KO Vrk1 mice reveal that even moderately reduced levels of Vrk1 expression result in minor neurological impairment and indicate new neuronal pathways likely involving VRK1.
Khare D, Or R, Resnick I, Barkatz C, Almogi-Hazan O, Avni B. Mesenchymal Stromal Cell-Derived Exosomes Affect mRNA Expression and Function of B-Lymphocytes. Front Immunol 2018;9:3053.
Background: Bone marrow mesenchymal stem cells (bmMSC) may play a role in the regulation of maturation, proliferation, and functional activation of lymphocytes, though the exact mechanisms are unknown. MSC-derived exosomes induce a regulatory response in the function of B, T, and monocyte-derived dendritic cells. Here, we evaluated the specific inhibition of human lymphocytes by bmMSC-derived exosomes and the effects on B-cell function. Methods: Exosomes were isolated from culture media of bmMSC obtained from several healthy donors. The effect of purified bmMSC-derived exosomes on activated peripheral blood mononuclear cells (PBMCs) and isolated B and T lymphocyte proliferation was measured by carboxyfluorescein succinimidyl ester assay. Using the Illumina sequencing platform, mRNA profiling was performed on B-lymphocytes activated in the presence or absence of exosomes. Ingenuity(R) pathway analysis software was applied to analyze pathway networks, and biological functions of the differentially expressed genes. Validation by RT-PCR was performed. The effect of bmMSC-derived exosomes on antibody secretion was measured by ELISA. Results: Proliferation of activated PBMCs or isolated T and B cells co-cultured with MSC-derived exosomes decreased by 37, 23, and 18%, respectively, compared to controls. mRNA profiling of activated B-lymphocytes revealed 186 genes that were differentially expressed between exosome-treated and control cells. We observed down- and up-regulation of genes that are involved in cell trafficking, development, hemostasis, and immune cell function. RNA-Seq results were validated by real time PCR analysis for the expression of CXCL8 (IL8) and MZB1 genes that are known to have an important role in immune modulation. Functional alterations were confirmed by decreased IgM production levels. Consistent results were demonstrated among a wide variety of healthy human bmMSC donors. Conclusion: Our data show that exosomes may play an important role in immune regulation. They inhibit proliferation of several types of immune cells. In B-lymphocytes they modulate cell function by exerting differential expression of the mRNA of relevant genes. The results of this study help elucidate the mechanisms by which exosomes induce immune regulation and may contribute to the development of newer and safer therapeutic strategies.
Gamliel M, Goldman-Wohl D, Isaacson B, Gur C, Stein N, Yamin R, Berger M, Grunewald M, Keshet E, Rais Y, Bornstein C, David E, Jelinski A, Eisenberg I, Greenfield C, Ben-David A, Imbar T, Gilad R, Haimov-Kochman R, Mankuta D, Elami-Suzin M, Amit I, Hanna JH, Yagel S, Mandelboim O. Trained Memory of Human Uterine NK Cells Enhances Their Function in Subsequent Pregnancies. Immunity 2018;48:951-962 e5.
Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-gamma and VEGFalpha, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.
Avigad Laron E, Aamar E, Enshell-Seijffers D. The Mesenchymal Niche of the Hair Follicle Induces Regeneration by Releasing Primed Progenitors from Inhibitory Effects of Quiescent Stem Cells. Cell Rep 2018;24:909-921 e3.
The mechanisms by which stem cell (SC) quiescence is regulated to allow normal regeneration are poorly understood. Here, we show that the mesenchymal niche of the hair follicle, the dermal papilla (DP), governs the properties of quiescent SCs in the bulge despite its relatively distant location. The DP induces regeneration by downregulating bulge-dependent inhibitory effects that restrain the intrinsic proliferation features of primed progenitors. Once regeneration initiates, the DP orchestrates Shh expression in primed-progenitor descendants by an autoregulatory circuit to restrict Shh expression to the DP vicinity and to confine Shh levels to act only on nearby cells. As the DP moves away from the bulge, quiescent SCs are exposed to Shh transiently. This ensures a short period of quiescent SC activation required for normal regeneration. Furthermore, our findings show that Shh signaling in the DP fine-tunes Wnt signaling activity and reveal the importance of signaling cross talk in coordinating regeneration pace.
Roitenberg N, Bejerano-Sagie M, Boocholez H, Moll L, Marques FC, Golodetzki L, Nevo Y, Elami T, Cohen E. Modulation of caveolae by insulin/IGF-1 signaling regulates aging of Caenorhabditis elegans. EMBO Rep 2018;19
Reducing insulin/IGF-1 signaling (IIS) extends lifespan, promotes protein homeostasis (proteostasis), and elevates stress resistance of worms, flies, and mammals. How these functions are orchestrated across the organism is only partially understood. Here, we report that in the nematode Caenorhabditis elegans, the IIS positively regulates the expression of caveolin-1 (cav-1), a gene which is primarily expressed in neurons of the adult worm and underlies the formation of caveolae, a subtype of lipid microdomains that serve as platforms for signaling complexes. Accordingly, IIS reduction lowers cav-1 expression and lessens the quantity of neuronal caveolae. Reduced cav-1 expression extends lifespan and mitigates toxic protein aggregation by modulating the expression of aging-regulating and signaling-promoting genes. Our findings define caveolae as aging-governing signaling centers and underscore the potential for cav-1 as a novel therapeutic target for the promotion of healthy aging.
Rimmerman N, Schottlender N, Reshef R, Dan-Goor N, Yirmiya R. The hippocampal transcriptomic signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain Behav Immun 2017;61:184-196.
Clinical studies suggest that key genetic factors involved in stress resilience are related to the innate immune system. In the brain, this system includes microglia cells, which play a major role in stress responsiveness. Consistently, mice with deletion of the CX3CR1 gene (CX3CR1(-/-) mice), which in the brain is expressed exclusively by microglia, exhibit resilience to chronic stress. Here, we compared the emotional, cognitive, neurogenic and microglial responses to chronic unpredictable stress (CUS) between CX3CR1(-/-) and wild type (WT) mice. This was followed by hippocampal whole transcriptome (RNA-seq) analysis. We found that following CUS exposure, WT mice displayed reduced sucrose preference, impaired novel object recognition memory, and reduced neurogenesis, whereas CX3CR1(-/-) mice were completely resistant to these effects of CUS. CX3CR1(-/-) mice were also resilient to the memory-suppressive effect of a short period of unpredictable stress. Microglial somas were larger in CX3CR1(-/-) than in WT, but in both genotypes CUS induced a similar decline in hippocampal microglial density and processes length. RNA sequencing and pathway analysis revealed basal strain differences, particularly reduced expression of interferon (IFN)-regulated and MHC class I gene transcripts in CX3CR1(-/-) mice. Furthermore, while CUS exposure similarly altered neuronal gene transcripts (e.g. Arc, Npas4) in both strains, transcripts downstream of hippocampal estrogen receptor signaling (particularly Igf2 and Igfbp2) were altered only in CX3CR1(-/-) mice. These findings indicate that emotional and cognitive stress resilience involves CX3CR1-dependent basal and stress-induced alterations in hippocampal transcription, implicating inhibition of CX3CR1 signaling as a novel approach for promoting stress resilience.
Zuela N, Dorfman J, Gruenbaum Y. Global transcriptional changes caused by an EDMD mutation correlate to tissue specific disease phenotypes in C. elegans. Nucleus 2017;8:60-69.
There are numerous heritable diseases associated with mutations in the LMNA gene. Most of these laminopathic diseases, including several muscular dystrophies, are autosomal dominant and have tissue-specific phenotypes. Our previous studies have shown that the globally expressed Emery-Dreifuss muscular dystrophy (EDMD)-linked lamin mutation, L535P, disrupts nuclear mechanical response specifically in muscle nuclei of C. elegans leading to atrophy of the body muscle cells and to reduced motility. Here we used RNA sequencing to analyze the global changes in gene expression caused by the L535P EDMD lamin mutation in order to gain better understanding of disease mechanisms and the correlation between transcription and phenotype. Our results show changes in key genes and biological pathways that can help explain the muscle specific phenotypes. In addition, the differential gene expression between wild-type and L535P mutant animals suggests that the pharynx function in the L535P mutant animals is affected by this lamin mutation. Moreover, these transcriptional changes were then correlated with reduced pharynx activity and abnormal pharynx muscle structure. Understanding disease mechanisms will potentially lead to new therapeutic approaches toward curing EDMD.
Ginzburg N, Cohen M, Chipman AD. Factors involved in early polarization of the anterior-posterior axis in the milkweed bug Oncopeltus fasciatus. Genesis 2017;55
The axes of insect embryos are defined early in the blastoderm stage. Genes involved in this polarization are well known in Drosophila, but less so in other insects, such as the milkweed bug Oncopeltus fasciatus. Using quantitative PCR, we looked at differential expression of several candidate genes for early anterior-posterior patterning and found that none of them are expressed asymmetrically in the early blastoderm. We then used an RNA-Seq approach to identify novel candidate genes that might be involved in early polarization in Oncopeltus. We focused on transcription factors (TFs) as these are likely to be central players in developmental processes. Using both homology and domain based identification approaches, we were unable to find any TF encoding transcripts that are expressed asymmetrically along the anterior-posterior axis at early stages. Using a GO-term analysis of all asymmetrically expressed mRNAs, we found an enrichment of genes relating to mitochondrial function in the posterior at the earliest studied time-point. We also found a gradual enrichment of transcription related activities, giving us a putative time frame for the maternal to zygotic transition. Our dataset provides us with a list of new candidate genes in early development, which can be followed up experimentally.
Chai C, Rivkin M, Berkovits L, Simerzin A, Zorde-Khvalevsky E, Rosenberg N, Klein S, Yaish D, Durst R, Shpitzen S, Udi S, Tam J, Heeren J, Worthmann A, Schramm C, Kluwe J, Ravid R, Hornstein E, Giladi H, Galun E. Metabolic Circuit Involving Free Fatty Acids, microRNA 122, and Triglyceride Synthesis in Liver and Muscle Tissues. Gastroenterology 2017;153:1404-1415.
BACKGROUND & AIMS: Effective treatments are needed for hepatic steatosis characterized by accumulation of triglycerides in hepatocytes, which leads to hepatocellular carcinoma. MicroRNA 122 (MIR122) is expressed only in the liver, where it regulates lipid metabolism. We investigated the mechanism by which free fatty acids (FFAs) regulate MIR122 expression and the effect of MIR122 on triglyceride synthesis. METHODS: We analyzed MIR122 promoter activity and validated its target mRNAs by transfection of Luciferase reporter plasmids into Huh7, BNL-1ME, and HEK293 cultured cell lines. We measured levels of microRNAs and mRNAs by quantitative real-time PCR analysis of RNA extracted from plasma, liver, muscle, and adipose tissues of C57BL/6 mice given the FFA-inducer CL316243. MIR122 was inhibited using an inhibitor of MIR122. Metabolic profiles of mice were determined using metabolic chambers and by histologic analyses of liver tissues. We performed RNA sequence analyses to identify metabolic pathways involving MIR122. RESULTS: We validated human Agpat1 and Dgat1 mRNAs, involved in triglyceride synthesis, as targets of MIR122. FFAs increased MIR122 expression in livers of mice by activating the retinoic acid-related orphan receptor alpha, and induced secretion of MIR122 from liver to blood. Circulating MIR122 entered muscle and adipose tissues of mice, reducing mRNA levels of genes involved in triglyceride synthesis. Mice injected with an inhibitor of MIR122 and then given CL316243, accumulated triglycerides in liver and muscle tissues, and had reduced rates of beta-oxidation. There was a positive correlation between level of FFAs and level of MIR122 in plasma samples from 6 healthy individuals, collected before and during fasting. CONCLUSIONS: In biochemical and histologic studies of plasma, liver, muscle, and adipose tissues from mice, we found that FFAs increase hepatic expression and secretion of MIR122, which regulates energy storage vs expenditure in liver and peripheral tissues. Strategies to reduce triglyceride levels, by increasing MIR122, might be developed for treatment of metabolic syndrome.
Weisblum Y, Oiknine-Djian E, Vorontsov OM, Haimov-Kochman R, Zakay-Rones Z, Meir K, Shveiky D, Elgavish S, Nevo Y, Roseman M, Bronstein M, Stockheim D, From I, Eisenberg I, Lewkowicz AA, Yagel S, Panet A, Wolf DG. Zika Virus Infects Early- and Midgestation Human Maternal Decidual Tissues, Inducing Distinct Innate Tissue Responses in the Maternal-Fetal Interface. J Virol 2017;91
Zika virus (ZIKV) has emerged as a cause of congenital brain anomalies and a range of placenta-related abnormalities, highlighting the need to unveil the modes of maternal-fetal transmission. The most likely route of vertical ZIKV transmission is via the placenta. The earliest events of ZIKV transmission in the maternal decidua, representing the maternal uterine aspect of the chimeric placenta, have remained unexplored. Here, we show that ZIKV replicates in first-trimester human maternal-decidual tissues grown ex vivo as three-dimensional (3D) organ cultures. An efficient viral spread in the decidual tissues was demonstrated by the rapid upsurge and continued increase of tissue-associated ZIKV load and titers of infectious cell-free virus progeny, released from the infected tissues. Notably, maternal decidual tissues obtained at midgestation remained similarly susceptible to ZIKV, whereas fetus-derived chorionic villi demonstrated reduced ZIKV replication with increasing gestational age. A genome-wide transcriptome analysis revealed that ZIKV substantially upregulated the decidual tissue innate immune responses. Further comparison of the innate tissue response patterns following parallel infections with ZIKV and human cytomegalovirus (HCMV) revealed that unlike HCMV, ZIKV did not induce immune cell activation or trafficking responses in the maternal-fetal interface but rather upregulated placental apoptosis and cell death molecular functions. The data identify the maternal uterine aspect of the human placenta as a likely site of ZIKV transmission to the fetus and further reveal distinct patterns of innate tissue responses to ZIKV. Our unique experimental model and findings could further serve to study the initial stages of congenital ZIKV transmission and pathogenesis and evaluate the effect of new therapeutic interventions. IMPORTANCE: In view of the rapid spread of the current ZIKV epidemic and the severe manifestations of congenital ZIKV infection, it is crucial to learn the fundamental mechanisms of viral transmission from the mother to the fetus. Our studies of ZIKV infection in the authentic tissues of the human maternal-fetal interface unveil a route of transmission whereby virus originating from the mother could reach the fetal compartment via efficient replication within the maternal decidual aspect of the placenta, coinhabited by maternal and fetal cells. The identified distinct placental tissue innate immune responses and damage pathways could provide a mechanistic basis for some of the placental developmental abnormalities associated with ZIKV infection. The findings in the unique model of the human decidua should pave the way to future studies examining the interaction of ZIKV with decidual immune cells and to evaluation of therapeutic interventions aimed at the earliest stages of transmission.
Weisblum Y, Oiknine-Djian E, Zakay-Rones Z, Vorontsov O, Haimov-Kochman R, Nevo Y, Stockheim D, Yagel S, Panet A, Wolf DG. APOBEC3A Is Upregulated by Human Cytomegalovirus (HCMV) in the Maternal-Fetal Interface, Acting as an Innate Anti-HCMV Effector. J Virol 2017;91
Human cytomegalovirus (HCMV) is the leading cause of congenital infection and is associated with a wide range of neurodevelopmental disabilities and intrauterine growth restriction. Yet our current understanding of the mechanisms modulating transplacental HCMV transmission is poor. The placenta, given its critical function in protecting the fetus, has evolved effective yet largely uncharacterized innate immune barriers against invading pathogens. Here we show that the intrinsic cellular restriction factor apolipoprotein B editing catalytic subunit-like 3A (APOBEC3A [A3A]) is profoundly upregulated following ex vivo HCMV infection in human decidual tissues-constituting the maternal aspect of the placenta. We directly demonstrated that A3A severely restricted HCMV replication upon controlled overexpression in epithelial cells, acting by a cytidine deamination mechanism to introduce hypermutations into the viral genome. Importantly, we further found that A3 editing of HCMV DNA occurs both ex vivo in HCMV-infected decidual organ cultures and in vivo in amniotic fluid samples obtained during natural congenital infection. Our results reveal a previously unexplored role for A3A as an innate anti-HCMV effector, activated by HCMV infection in the maternal-fetal interface. These findings pave the way to new insights into the potential impact of APOBEC proteins on HCMV pathogenesis.IMPORTANCE In view of the grave outcomes associated with congenital HCMV infection, there is an urgent need to better understand the innate mechanisms acting to limit transplacental viral transmission. Toward this goal, our findings reveal the role of the intrinsic cellular restriction factor A3A (which has never before been studied in the context of HCMV infection and vertical viral transmission) as a potent anti-HCMV innate barrier, activated by HCMV infection in the authentic tissues of the maternal-fetal interface. The detection of naturally occurring hypermutations in clinical amniotic fluid samples of congenitally infected fetuses further supports the idea of the occurrence of A3 editing of the viral genome in the setting of congenital HCMV infection. Given the widely differential tissue distribution characteristics and biological functions of the members of the A3 protein family, our findings should pave the way to future studies examining the potential impact of A3A as well as of other A3s on HCMV pathogenesis.
Malakar P, Shilo A, Mogilevsky A, Stein I, Pikarsky E, Nevo Y, Benyamini H, Elgavish S, Zong X, Prasanth KV, Karni R. Long Noncoding RNA MALAT1 Promotes Hepatocellular Carcinoma Development by SRSF1 Upregulation and mTOR Activation. Cancer Res 2017;77:1155-1167.
Several long noncoding RNAs (lncRNA) are abrogated in cancer but their precise contributions to oncogenesis are still emerging. Here we report that the lncRNA MALAT1 is upregulated in hepatocellular carcinoma and acts as a proto-oncogene through Wnt pathway activation and induction of the oncogenic splicing factor SRSF1. Induction of SRSF1 by MALAT1 modulates SRSF1 splicing targets, enhancing the production of antiapoptotic splicing isoforms and activating the mTOR pathway by modulating the alternative splicing of S6K1. Inhibition of SRSF1 expression or mTOR activity abolishes the oncogenic properties of MALAT1, suggesting that SRSF1 induction and mTOR activation are essential for MALAT1-induced transformation. Our results reveal a mechanism by which lncRNA MALAT1 acts as a proto-oncogene in hepatocellular carcinoma, modulating oncogenic alternative splicing through SRSF1 upregulation. Cancer Res; 77(5); 1155-67. ©2016 AACR.
Guedj A, Geiger-Maor A, Galun E, Benyamini H, Nevo Y, Elgavish S, Amsalem H, Rachmilewitz J. Early age decline in DNA repair capacity in the liver: in depth profile of differential gene expression. Aging (Albany NY) 2016;8:3131-3146.
Aging is associated with progressive decline in cell function and with increased damage to macromolecular components. DNA damage, in the form of double-strand breaks (DSBs), increases with age and in turn, contributes to the aging process and age-related diseases. DNA strand breaks triggers a set of highly orchestrated signaling events known as the DNA damage response (DDR), which coordinates DNA repair. However, whether the accumulation of DNA damage with age is a result of decreased repair capacity, remains to be determined. In our study we showed that with age there is a decline in the resolution of foci containing γH2AX and pKAP-1 in diethylnitrosamine (DEN)-treated mouse livers, already evident at a remarkably early age of 6-months. Considerable age-dependent differences in global gene expression profiles in mice livers after exposure to DEN, further affirmed these age related differences in the response to DNA damage. Functional analysis identified p53 as the most overrepresented pathway that is specifically enhanced and prolonged in 6-month-old mice. Collectively, our results demonstrated an early decline in DNA damage repair that precedes 'old age', suggesting this may be a driving force contributing to the aging process rather than a phenotypic consequence of old age.