differential expression

Zaffran I, Zoabi Y, Gaur P, Alekberli FRahimli, Tiligada E, Yutkin V, Levi-Schaffer F. Eosinophils but not mast cells exert anti-tumorigenic activity, without being predictive markers of the long-term response to Bacillus Calmette-Guérin (BCG) therapy in patients with bladder carcinoma [Internet]. Inflamm ResInflammation research : official journal of the European Histamine Research Society .. [et al.] 2025;74(1):68.Available from: https://pubmed.ncbi.nlm.nih.gov/40272538/ PubMed
BACKGROUND: Bacillus Calmette-Guerin (BCG) therapy is an established immunotherapy for non-muscle invasive bladder cancer (NMIBC); however, the response variability of patients remains a challenge, necessitating insight into immune cell function. Previous studies established that a preexisting Th2 immune microenvironment correlates with a positive BCG therapy outcome. Therefore, in this study, we explored the role of mast cells (MCs) and eosinophils in bladder cancer as a potential predicting tool for BCG immunotherapy response. METHODS: We investigated the effect of MCs and eosinophils on bladder cancer cell viability together with their chemotactic migration towards cancer cells in vitro. The effect of BCG on these immune cells was also evaluated. Moreover, we performed an orthotopic model of bladder cancer in MC- and eosinophil-deficient mice. Finally, to evaluate whether these immune cells predict the therapy response, 26 patient biopsies pre-BCG treatment were analyzed for MC and eosinophil numbers in the tissue and sequenced for gene expression. RESULTS: Eosinophils, but not MCs, reduced bladder cancer cell viability in vitro and inhibited tumor growth in vivo. However, addition of BCG did not increase these effects in vitro. Patient biopsy analysis and mRNA sequencing showed that neither cell type predicted long-term therapy responsiveness. Gene expression analysis suggested that extracellular matrix and epithelial-to-mesenchymal transition factors could influence BCG therapy outcomes. CONCLUSION: Even though eosinophils exhibit anti-tumorigenic effects in bladder cancer, neither MCs nor eosinophils were predictive of the long-term BCG therapy response. However, our findings implicate that matrix-related factors may modulate BCG therapy responses.
Heng CKMatthew, Darlyuk-Saadon I, Liao W, Mohanam MP, Gan PXL, Gilad N, M Y Chan CC, Plaschkes I, Wong WSFred, Engelberg D. A combination of alveolar type 2-specific p38α activation with a high-fat diet increases inflammatory markers in mouse lungs [Internet]. J Biol ChemThe Journal of biological chemistry 2025;301(4):108425.Available from: https://pubmed.ncbi.nlm.nih.gov/40118456/ PubMed
Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease afflict millions of individuals globally and are significant sources of disease mortality. While the molecular mechanisms underlying such diseases are unclear, environmental and social factors, such as cigarette smoke and obesity, increase the risk of disease development. Yet, not all smokers or obese individuals will develop chronic respiratory diseases. The mitogen-activated protein kinase p38α is abnormally active in such maladies, but its contribution, if any, to disease etiology is unknown. To assess whether p38α activation per se in the lung could impose disease symptoms, we generated a transgenic mouse model allowing controllable expression of an intrinsically active variant, p38α(D176A+F327S), specifically in lung alveolar type 2 pneumocytes. Sustained expression of p38α(D176A+F327S) did not appear to induce obvious pathological outcomes or to exacerbate inflammatory outcomes in mice challenged with common respiratory disease triggers. However, mice expressing p38α(D176A+F327S) in alveolar type 2 cells and fed with a high-fat diet exhibited increased numbers of airway eosinophils and lymphocytes, upregulated levels of proinflammatory cytokines and chemokines including interleukin-1β and eotaxin, as well as a reduction in levels of leptin and adiponectin within the lung. Neither high-fat diet nor p38α(D176A+F327S) alone induced such outcomes. Perhaps in obese individuals with associated respiratory diseases, elevated p38α activity which happens to occur is the factor that promotes their development.
Ezer S, Ronin N, Yanovsky-Dagan S, Rotem-Bamberger S, Halstuk O, Wexler Y, Ben-Moshe Z, Plaschkes I, Benyamini H, Saada A, Inbal A, Harel T. Transcriptome analysis of atad3-null zebrafish embryos elucidates possible disease mechanisms [Internet]. Orphanet J Rare DisOrphanet journal of rare diseases 2025;20(1):181.Available from: https://pubmed.ncbi.nlm.nih.gov/40234890/ PubMed
BACKGROUND: ATAD3A, a nuclear gene encoding the ATAD3A protein, has diverse roles in mitochondrial processes, encompassing mitochondrial dynamics, mitochondrial DNA maintenance, metabolic pathways and inter-organellar interactions. Pathogenic variants in this gene cause neurological diseases in humans with recognizable genotype-phenotype correlations. Yet, gaps in knowledge remain regarding the underlying pathogenesis. METHODS: To further investigate the gene function and its implication in health and disease, we utilized CRISPR/Cas9 genome editing to generate a knockout model of the zebrafish ortholog gene, atad3. We characterized the phenotype of the null model, performed mitochondrial and functional tests, and compared the transcriptome of null embryos to their healthy siblings. RESULTS: Analysis of atad3-null zebrafish embryos revealed microcephaly, small eyes, pericardial edema and musculature thinning, closely mirroring the human rare disease phenotype. Larvae exhibited delayed hatching and embryonic lethality by 13 days post-fertilization (dpf). Locomotor activity, ATP content, mitochondrial content, and mitochondrial activity were all reduced in the mutant embryos. Transcriptome analysis at 3 dpf via RNA-sequencing indicated decline in most mitochondrial pathways, accompanied by a global upregulation of cytosolic tRNA synthetases, presumably secondary to mitochondrial stress and possibly endoplasmic reticulum (ER)-stress. Differential expression of select genes was corroborated in fibroblasts from an affected individual. CONCLUSIONS: The atad3-null zebrafish model emerges as a reliable representation of human ATAD3A-associated disorders, with similarities in differentially expressed pathways and processes. Furthermore, our study underscores mitochondrial dysfunction as the primary underlying pathogenic mechanism in ATAD3A-associated disorders and identifies potential readouts for therapeutic studies.
Raiter A, Barhum Y, Lipovetsky J, Menachem C, Elgavish S, Ruppo S, Birger Y, Izraeli S, Steinberg-Shemer O, Yerushalmi R. Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function [Internet]. NeoplasiaNeoplasia (New York, N.Y.) 2024;60:101117.Available from: https://pubmed.ncbi.nlm.nih.gov/39729650/ PubMed
Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents. This requires a comprehensive understanding of TNBC's tumor microenvironment. We recently demonstrated that Galectin-3 (Gal-3) binding protein/Gal-3 complex secreted by TNBC cells induces immunosuppression, through inhibiting CD45 signaling in T cells. Here, we further investigated the interaction between secreted Gal-3 and T cells in TNBC. Using CRISPR/Cas9 gene editing of the TNBC MDA-MB-231 cell-line, we obtained Gal-3 negative((neg)) clones. We studied these in an in-vitro model, co-cultured with peripheral blood mononuclear cells (PBMC) to imitate immune-tumor interaction, and in an in-vivo model, when implanted in mice. Gal-3(neg) tumors in mice had decelerated tumor growth after PBMC inoculation. In contrast, the Gal-3 positive((pos)) tumors continued growing despite PBMC inoculation, and tumor T regulatory cell (CD4/FoxP3+) infiltration increased. RNA sequencing of T cells from women with TNBC with elevated plasma levels of Gal-3 revealed significantly lower expression of oxidative phosphorylation genes than in T cells from healthy women. Similarly, in our in-vitro model, the decreased expression of oxidative phosphorylation genes and mitochondrial dysfunction resulted in a significant increase in CD8 intracellular reactive oxygen species. Consequently, T exhausted cells (CD8/PD1/Tim3/Lag3+) significantly increased in PBMC co-cultured with Gal-3(pos) TNBCs. To conclude, we revealed a novel TNBC-related Gal-3 suppressor mechanism that involved upregulation of CD4 T regulatory and of CD8 T exhausted cells.
Yehezkel AS, Abudi N, Nevo Y, Benyamini H, Elgavish S, Weinstock M, Abramovitch R. AN1284 attenuates steatosis, lipogenesis, and fibrosis in mice with pre-existing non-alcoholic steatohepatitis and directly affects aryl hydrocarbon receptor in a hepatic cell line. Front Endocrinol (Lausanne) 2023;14:1226808.

Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease with hepatic inflammation and fibrosis for which there is currently no drug treatment. This study determined whether an indoline derivative, AN1284, which significantly reduced damage in a model of acute liver disease, can reverse steatosis and fibrosis in mice with pre-existing NASH and explore its mechanism of action. The mouse model of dietary-induced NASH reproduces most of the liver pathology seen in human subjects. This was confirmed by RNA-sequencing analysis. The Western diet, given for 4 months, caused steatosis, inflammation, and liver fibrosis. AN1284 (1 mg or 5 mg/kg/day) was administered for the last 2 months of the diet by micro-osmotic-pumps (mps). Both doses significantly decreased hepatic damage, liver weight, hepatic fat content, triglyceride, serum alanine transaminase, and fibrosis. AN1284 (1 mg/kg/day) given by mps or in the drinking fluid significantly reduced fibrosis produced by carbon tetrachloride injections. In human HUH7 hepatoma cells incubated with palmitic acid, AN1284 (2.1 and 6.3 ng/ml), concentrations compatible with those in the liver of mice treated with AN1284, decreased lipid formation by causing nuclear translocation of the aryl hydrocarbon receptor (AhR). AN1284 downregulated fatty acid synthase (FASN) and sterol regulatory element-binding protein 1c (SREBP-1c) and upregulated Acyl-CoA Oxidase 1 and Cytochrome P450-a1, genes involved in lipid metabolism. In conclusion, chronic treatment with AN1284 (1mg/kg/day) reduced pre-existing steatosis and fibrosis through AhR, which affects several contributors to the development of fatty liver disease. Additional pathways are also influenced by AN1284 treatment.

Haran A, Bergel M, Kleiman D, Hefetz L, Israeli H, Weksler-Zangen S, Agranovich B, Abramovich I, Ben-Haroush Schyr R, Gottlieb E, Ben-Zvi D. Differential effects of bariatric surgery and caloric restriction on hepatic one-carbon and fatty acid metabolism. iScience 2023;26(7):107046.

Weight loss interventions, including dietary changes, pharmacotherapy, or bariatric surgery, prevent many of the adverse consequences of obesity, and may also confer intervention-specific benefits beyond those seen with decreased weight alone. We compared the molecular effects of different interventions on liver metabolism to understand the mechanisms underlying these benefits. Male rats on a high-fat, high-sucrose diet underwent sleeve gastrectomy (SG) or intermittent fasting with caloric restriction (IF-CR), achieving equivalent weight loss. The interventions were compared to (AL)-fed controls. Analysis of liver and blood metabolome and transcriptome revealed distinct and sometimes contrasting metabolic effects between the two interventions. SG primarily influenced one-carbon metabolic pathways, whereas IF-CR increased lipogenesis and glycogen storage. These findings suggest that the unique metabolic pathways affected by SG and IF-CR contribute to their distinct clinical benefits, with bariatric surgery potentially influencing long-lasting changes through its effect on one-carbon metabolism.

Srivastava R, Horwitz M, Hershko-Moshe A, Bronstein S, Ben-Dov IZ, Melloul D. Posttranscriptional regulation of the prostaglandin E receptor spliced-isoform EP3-γ and its implication in pancreatic β-cell failure. FASEB J 2023;37(6):e22958.

In Type 2 diabetes (T2D), elevated lipid levels have been suggested to contribute to insulin resistance and β-cell dysfunction. We previously reported that the expression of the PGE2 receptor EP3 is elevated in islets of T2D individuals and is preferentially stimulated by palmitate, leading to β-cell failure. The mouse EP3 receptor generates three isoforms by alternative splicing which differ in their C-terminal domain and are referred to as mEP3α, mEP3β, and mEP3γ. We bring evidence that the expression of the mEP3γ isoform is elevated in islets of diabetic db/db mice and is selectively upregulated by palmitate. Specific knockdown of the mEP3γ isoform restores the expression of β-cell-specific genes and rescues MIN6 cells from palmitate-induced dysfunction and apoptosis. This study indicates that palmitate stimulates the expression of the mEP3γ by a posttranscriptional mechanism, compared to the other spliced isoforms, and that the de novo synthesized ceramide plays an important role in FFA-induced mEP3γ expression in β-cells. Moreover, induced levels of mEP3γ mRNA by palmitate or ceramide depend on p38 MAPK activation. Our findings suggest that mEP3γ gene expression is regulated at the posttranscriptional level and defines the EP3 signaling axis as an important pathway mediating β-cell-impaired function and demise.

Philosoph AM, Dombrovsky A, Luria N, Sela N, Elad Y, Frenkel O. Rapid defense mechanism suppression during viral- oomycete disease complex formation. Front Plant Sci 2023;14:1124911.

Combined infection of the host plant with pathogens involving different parasitic lifestyles may result in synergistic effects that intensify disease symptoms. Understanding the molecular dynamics during concurrent infection provides essential insight into the host response. The transcriptomic pattern of cucumber plants infected with a necrotrophic pathogen, , and a biotrophic pathogen, Cucumber green mottle mosaic virus (CGMMV) was studied at different time points, under regimes of single and co-infection. Analysis of CGMMV infection alone revealed a mild influence on host gene expression at the stem base, while the infection by is associated with drastic changes in gene expression. Comparing as a single infecting pathogen with a later co-infection by CGMMV revealed a rapid host response as early as 24 hours post-CGMMV inoculation with a sharp downregulation of genes related to the host defense mechanism against the necrotrophic pathogen. Suppression of the defense mechanism of co-infected plants was followed by severe stress, including 30% plants mortality and an increase of the hyphae. The first evidence of defense recovery against the necrotrophic pathogen only occurred 13 days post-viral infection. These results support the hypothesis that the viral infection of the Pythium pre-infected plants subverted the host defense system and changed the equilibrium obtained with . It also implies a time window in which the plants are most susceptible to after CGMMV infection.

Hefetz I, Israeli O, Bilinsky G, Plaschkes I, Hazkani-Covo E, Hayouka Z, Lampert A, Helman Y. A reversible mutation in a genomic hotspot saves bacterial swarms from extinction. iScience 2023;26(2):106043.

Microbial adaptation to changing environmental conditions is frequently mediated by hypermutable sequences. Here we demonstrate that such a hypermutable hotspot within a gene encoding a flagellar unit of generated spontaneous non-swarming mutants with increased stress resistance. These mutants, which survived conditions that eliminated wild-type cultures, could be carried by their swarming siblings when the colony spread, consequently increasing their numbers at the spreading edge. Of interest, the hypermutable nature of the aforementioned sequence enabled the non-swarming mutants to serve as "seeds" for a new generation of wild-type cells through reversion of the mutation. Using a mathematical model, we examined the survival dynamics of colonies under fluctuating environments. Our experimental and theoretical results suggest that the non-swarming, stress-resistant mutants can save the colony from extinction. Notably, we identified this hypermutable sequence in flagellar genes of additional species, suggesting that this phenomenon could be wide-spread and ecologically important.

Pick M, Lebel E, Elgavish S, Benyamini H, Nevo Y, Hertz R, Bar-Tana J, Rognoni P, Merlini G, Gatt ME. Amyloidogenic light chains impair plasma cell survival. Haematologica 2023;

Systemic light chain amyloidosis (AL) is a clonal plasma cell (PC) disorder characterized by the deposition of misfolded immunoglobulin light chains (LC) as insoluble fibrils in organs. The lack of suitable models has hindered the investigation of the disease mechanisms. Our aim was to establish AL producing PC lines and to use them to investigate the biology of the amyloidogenic clone. We used lentiviral vectors to generate cell lines expressing LCs from patients suffering from AL amyloidosis. The AL LC producing cell lines showed a significant decrease in proliferation, cell cycle arrest, and an increase in apoptosis and autophagy as compared with the multiple myeloma (MM) LC producing cells. Using RNAsequencing the AL LC producing lines showed higher mitochondrial oxidative stress, decreased activity of the myc and cholesterol pathways. The neoplastic behavior of PCs is altered by the constitutive expression of amyloidogenic LC causing intracellular toxicity. This observation may explain the disparity in the malignant behavior of the amyloid clone compared to the myeloma clone. These findings should enable future in vitro studies and help delineate AL's unique cellular pathways, thus expediting the development of specific treatments for AL patients.

Soni A, Klebanov-Akopyan O, Erben E, Plaschkes I, Benyamini H, Mitesser V, Harel A, Yamin K, Onn I, Shlomai J. UMSBP2 is chromatin remodeler that functions in regulation of gene expression and suppression of antigenic variation in trypanosomes. Nucleic Acids Res 2023;51(11):5678-5698.

Universal Minicircle Sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind the single-stranded G-rich UMS sequence, conserved at the replication origins of minicircles in the kinetoplast DNA, the mitochondrial genome of kinetoplastids. Trypanosoma brucei UMSBP2 has been recently shown to colocalize with telomeres and to play an essential role in chromosome end protection. Here we report that TbUMSBP2 decondenses in vitro DNA molecules, which were condensed by core histones H2B, H4 or linker histone H1. DNA decondensation is mediated via protein-protein interactions between TbUMSBP2 and these histones, independently of its previously described DNA binding activity. Silencing of the TbUMSBP2 gene resulted in a significant decrease in the disassembly of nucleosomes in T. brucei chromatin, a phenotype that could be reverted, by supplementing the knockdown cells with TbUMSBP2. Transcriptome analysis revealed that silencing of TbUMSBP2 affects the expression of multiple genes in T. brucei, with a most significant effect on the upregulation of the subtelomeric variant surface glycoproteins (VSG) genes, which mediate the antigenic variation in African trypanosomes. These observations suggest that UMSBP2 is a chromatin remodeling protein that functions in the regulation of gene expression and plays a role in the control of antigenic variation in T. brucei.

Sharma A, Mistriel-Zerbib S, Najar RAhmad, Engal E, Bentata M, Taqatqa N, Dahan S, Cohen K, Jaffe-Herman S, Geminder O, Baker M, Nevo Y, Plaschkes I, Kay G, Drier Y, Berger M, Salton M. Isoforms of the TAL1 transcription factor have different roles in hematopoiesis and cell growth. PLoS Biol 2023;21(6):e3002175.

T-cell acute lymphoblastic leukemia (T-ALL) protein 1 (TAL1) is a central transcription factor in hematopoiesis. The timing and level of TAL1 expression orchestrate the differentiation to specialized blood cells and its overexpression is a common cause of T-ALL. Here, we studied the 2 protein isoforms of TAL1, short and long, which are generated by the use of alternative promoters as well as by alternative splicing. We analyzed the expression of each isoform by deleting an enhancer or insulator, or by opening chromatin at the enhancer location. Our results show that each enhancer promotes expression from a specific TAL1 promoter. Expression from a specific promoter gives rise to a unique 5' UTR with differential regulation of translation. Moreover, our study suggests that the enhancers regulate TAL1 exon 3 alternative splicing by inducing changes in the chromatin at the splice site, which we demonstrate is mediated by KMT2B. Furthermore, our results indicate that TAL1-short binds more strongly to TAL1 E-protein partners and functions as a stronger transcription factor than TAL1-long. Specifically TAL1-short has a unique transcription signature promoting apoptosis. Finally, when we expressed both isoforms in mice bone marrow, we found that while overexpression of both isoforms prevents lymphoid differentiation, expression of TAL-short alone leads to hematopoietic stem cell exhaustion. Furthermore, we found that TAL1-short promoted erythropoiesis and reduced cell survival in the CML cell line K562. While TAL1 and its partners are considered promising therapeutic targets in the treatment of T-ALL, our results show that TAL1-short could act as a tumor suppressor and suggest that altering TAL1 isoform's ratio could be a preferred therapeutic approach.

Michaeli TFalick, Sabag O, Fok R, Azria B, Monin J, Nevo Y, Gielchinsky Y, Berman BP, Cedar H, Bergman Y. Muscle injury causes long-term changes in stem-cell DNA methylation. Proc Natl Acad Sci U S A 2022;119(52):e2212306119.

Injury to muscle brings about the activation of stem cells, which then generate new myocytes to replace damaged tissue. We demonstrate that this activation is accompanied by a dramatic change in the stem-cell methylation pattern that prepares them epigenetically for terminal myocyte differentiation. These de- and de novo methylation events occur at regulatory elements associated with genes involved in myogenesis and are necessary for activation and regeneration. Local injury of one muscle elicits an almost identical epigenetic change in satellite cells from other muscles in the body, in a process mediated by circulating factors. Furthermore, this same methylation state is also generated in muscle stem cells (MuSCs) of female animals following pregnancy, even in the absence of any injury. Unlike the activation-induced expression changes, which are transient, the induced methylation profile is stably maintained in resident MuSCs and thus represents a molecular memory of previous physiological events that is probably programmed to provide a mechanism for long-term adaptation.

Dahan T, Nassar S, Yajuk O, Steinberg E, Benny O, Abudi N, Plaschkes I, Benyamini H, Gozal D, Abramovitch R, Gileles-Hillel A. Chronic Intermittent Hypoxia during Sleep Causes Browning of Interscapular Adipose Tissue Accompanied by Local Insulin Resistance in Mice. Int J Mol Sci 2022;23(24)

Obstructive sleep apnea (OSA) is a highly prevalent condition, characterized by intermittent hypoxia (IH), sleep disruption, and altered autonomic nervous system function. OSA has been independently associated with dyslipidemia, insulin resistance, and metabolic syndrome. Brown adipose tissue (BAT) has been suggested as a modulator of systemic glucose tolerance through adaptive thermogenesis. Reductions in BAT mass have been associated with obesity and metabolic syndrome. No studies have systematically characterized the effects of chronic IH on BAT. Thus, we aimed to delineate IH effects on BAT and concomitant metabolic changes. C57BL/6J 8-week-old male mice were randomly assigned to IH during sleep (alternating 90 s cycles of 6.5% FO followed by 21% FO) or normoxia (room air, RA) for 10 weeks. Mice were subjected to glucose tolerance testing and F-FDG PET-MRI towards the end of the exposures followed by BAT tissues analyses for morphological and global transcriptomic changes. Animals exposed to IH were glucose intolerant despite lower total body weight and adiposity. BAT tissues in IH-exposed mice demonstrated characteristic changes associated with "browning"-smaller lipids, increased vascularity, and a trend towards higher protein levels of UCP1. Conversely, mitochondrial DNA content and protein levels of respiratory chain complex III were reduced. Pro-inflammatory macrophages were more abundant in IH-exposed BAT. Transcriptomic analysis revealed increases in fatty acid oxidation and oxidative stress pathways in IH-exposed BAT, along with a reduction in pathways related to myogenesis, hypoxia, and IL-4 anti-inflammatory response. Functionally, IH-exposed BAT demonstrated reduced absorption of glucose on PET scans and reduced phosphorylation of AKT in response to insulin. Current studies provide initial evidence for the presence of a maladaptive response of interscapular BAT in response to chronic IH mimicking OSA, resulting in a paradoxical divergence, namely, BAT browning but tissue-specific and systemic insulin resistance. We postulate that oxidative stress, mitochondrial dysfunction, and inflammation may underlie these dichotomous outcomes in BAT.

Livne H, Avital T, Ruppo S, Harazi A, Mitrani-Rosenbaum S, Daya A. Generation and characterization of a novel gne Knockout Model in Zebrafish. Front Cell Dev Biol 2022;10:976111.
GNE Myopathy is a rare, recessively inherited neuromuscular worldwide disorder, caused by a spectrum of bi-allelic mutations in the human GNE gene. GNE encodes a bi-functional enzyme responsible for the rate-limiting step of sialic acid biosynthesis pathway. However, the process in which GNE mutations lead to the development of a muscle pathology is not clear yet. Cellular and mouse models for GNE Myopathy established to date have not been informative. Further, additional GNE functions in muscle have been hypothesized. In these studies, we aimed to investigate gne functions using zebrafish genetic and transgenic models, and characterized them using macroscopic, microscopic, and molecular approaches. We first established transgenic zebrafish lineages expressing the human GNE cDNA carrying the M743T mutation, driven by the zebrafish gne promoter. These fish developed entirely normally. Then, we generated a gne knocked-out (KO) fish using the CRISPR/Cas9 methodology. These fish died 8-10 days post-fertilization (dpf), but a phenotype appeared less than 24 h before death and included progressive body axis curving, deflation of the swim bladder and decreasing movement and heart rate. However, muscle histology uncovered severe defects, already at 5 dpf, with compromised fiber organization. Sialic acid supplementation did not rescue the larvae from this phenotype nor prolonged their lifespan. To have deeper insights into the potential functions of gne in zebrafish, RNA sequencing was performed at 3 time points (3, 5, and 7 dpf). Genotype clustering was progressive, with only 5 genes differentially expressed in gne KO compared to gne WT siblings at 3 dpf. Enrichment analyses of the primary processes affected by the lack of gne also at 5 and 7 dpf point to the involvement of cell cycle and DNA damage/repair processes in the gne KO zebrafish. Thus, we have established a gne KO zebrafish lineage and obtained new insights into gne functions. This is the only model where GNE can be related to clear muscle defects, thus the only animal model relevant to GNE Myopathy to date. Further elucidation of gne precise mechanism-of-action in these processes could be relevant to GNE Myopathy and allow the identification of novel therapeutic targets.