networks

Pandi K, Angabo S, Makkawi H, Benyamini H, Elgavish S, Nussbaum G. -Induced TLR2 Interactome Analysis Reveals Association with PARP9. J Dent Res 2024;:220345231222181.

is a Gram-negative anaerobic bacterium strongly associated with periodontal disease. Toll-like receptor 2 (TLR2) is indispensable for the host response to , but escapes from immune clearance via TLR2-dependent activation of phosphoinositide-3-kinase (PI3K). To probe the TLR2-dependent escape pathway of , we analyzed the TLR2 interactome induced following infection or activation by a synthetic lipopeptide TLR2/1 agonist on human macrophages overexpressing TLR2. Interacting proteins were stabilized by cross-linking and then immunoprecipitated and analyzed by mass spectrometry. In total, 792 proteins were recovered and network analysis enabled mapping of the TLR2 interactome at baseline and in response to infection. The infection-induced TLR2 interactome included the poly (ADP-ribose) polymerase family member mono-ADP-ribosyltransferase protein 9 (PARP9) and additional members of the PARP9 complex (DTX3L and NMI). PARP9 and its complex members are highly upregulated in macrophages exposed to or to the synthetic TLR2/1 ligand PamCys-Ser-(Lys) (PAM). Consistent with its known role in virally induced interferon production, PARP9 knockdown blocked type I interferon (IFN-I) production in response to and reduced inflammatory cytokine production. We found that drives signal transducer and activation of transcription (STAT) 1 (S727) phosphorylation through TLR2-PARP9, explaining PARP9's role in the induction of IFN-I downstream of TLR2. Furthermore, PARP9 knockdown reduced PI3K activation by , leading to improved macrophage bactericidal activity. In summary, PARP9 is a novel TLR2 interacting partner that enables IFN-I induction and immune escape in macrophages downstream of TLR2 sensing.

Ben-Nun-Shaul O, Srivastava R, Elgavish S, Gandhi S, Nevo Y, Benyamini H, Eden A, Oppenheim A. Empty SV40 capsids increase survival of septic rats by eliciting numerous host signaling networks that participate in a number of systemic functions [Internet]. Oncotarget 2020;11:574-588.Available from: https://pubmed.ncbi.nlm.nih.gov/32110278/ PublMed
Sepsis is an excessive, dysregulated immune response to infection that activates inflammatory and coagulation cascades, which may lead to tissue injury, multiple organ dysfunction syndrome and death. Millions of individuals die annually of sepsis. To date, the only treatment available is antibiotics, drainage of the infection source when possible, and organ support in intensive care units. Numerous previous attempts to develop therapeutic treatments, directed at discreet targets of the sepsis cascade, could not cope with the complex pathophysiology of sepsis and failed. Here we describe a novel treatment, based on empty capsids of SV40 (nanocapsids - NCs). Studies in a severe rat sepsis model showed that pre-treatment by NCs led to a dramatic increase in survival, from zero to 75%. Transcript analyses (RNAseq) demonstrated that the NC treatment is a paradigm shift. The NCs affect multiple facets of biological functions. The affected genes are modified with time, adjusting to the recovery processes. The NCs effect on normal control rats was negligible. The study shows that the NCs are capable of coping with diseases with intricate pathophysiology. Further studies are needed to determine whether when applied after sepsis onset, the NCs still improve outcome.
Brill-Karniely Y, Dror D, Duanis-Assaf T, Goldstein Y, Schwob O, Millo T, Orehov N, Stern T, Jaber M, Loyfer N, Vosk-Artzi M, Benyamini H, Bielenberg D, Kaplan T, Buganim Y, Reches M, Benny O. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability [Internet]. Sci Adv 2020;6:eaax2861.Available from: https://pubmed.ncbi.nlm.nih.gov/31998832/ PubMed
The malignancy potential is correlated with the mechanical deformability of the cancer cells. However, mechanical tests for clinical applications are limited. We present here a Triangular Correlation (TrC) between cell deformability, phagocytic capacity, and cancer aggressiveness, suggesting that phagocytic measurements can be a mechanical surrogate marker of malignancy. The TrC was proved in human prostate cancer cells with different malignancy potential, and in human bladder cancer and melanoma cells that were sorted into subpopulations based solely on their phagocytic capacity. The more phagocytic subpopulations showed elevated aggressiveness ex vivo and in vivo. The uptake potential was preserved, and differences in gene expression and in epigenetic signature were detected. In all cases, enhanced phagocytic and aggressiveness phenotypes were correlated with greater cell deformability and predicted by a computational model. Our multidisciplinary study provides the proof of concept that phagocytic measurements can be applied for cancer diagnostics and precision medicine.
Guedj A, Geiger-Maor A, Galun E, Benyamini H, Nevo Y, Elgavish S, Amsalem H, Rachmilewitz J. Early age decline in DNA repair capacity in the liver: in depth profile of differential gene expression. Aging (Albany NY) 2016;8:3131-3146.
Aging is associated with progressive decline in cell function and with increased damage to macromolecular components. DNA damage, in the form of double-strand breaks (DSBs), increases with age and in turn, contributes to the aging process and age-related diseases. DNA strand breaks triggers a set of highly orchestrated signaling events known as the DNA damage response (DDR), which coordinates DNA repair. However, whether the accumulation of DNA damage with age is a result of decreased repair capacity, remains to be determined. In our study we showed that with age there is a decline in the resolution of foci containing γH2AX and pKAP-1 in diethylnitrosamine (DEN)-treated mouse livers, already evident at a remarkably early age of 6-months. Considerable age-dependent differences in global gene expression profiles in mice livers after exposure to DEN, further affirmed these age related differences in the response to DNA damage. Functional analysis identified p53 as the most overrepresented pathway that is specifically enhanced and prolonged in 6-month-old mice. Collectively, our results demonstrated an early decline in DNA damage repair that precedes 'old age', suggesting this may be a driving force contributing to the aging process rather than a phenotypic consequence of old age.