proteomics

Permyakova A, Hamad S, Hinden L, Baraghithy S, Kogot-Levin A, Yosef O, Shalev O, Tripathi MK, Amal H, Basu A, Arif M, Cinar R, Kunos G, Berger M, Leibowitz G, Tam J. Renal Mitochondrial ATP Transporter Ablation Ameliorates Obesity-Induced CKD. J Am Soc Nephrol 2024;

This study sheds light on the central role of adenine nucleotide translocase 2 (ANT2) in the pathogenesis of obesity-induced CKD. Our data demonstrate that ANT2 depletion in renal proximal tubule cells (RPTCs) leads to a shift in their primary metabolic program from fatty acid oxidation to aerobic glycolysis, resulting in mitochondrial protection, cellular survival, and preservation of renal function. These findings provide new insights into the underlying mechanisms of obesity-induced CKD and have the potential to be translated toward the development of targeted therapeutic strategies for this debilitating condition.

Pandi K, Angabo S, Makkawi H, Benyamini H, Elgavish S, Nussbaum G. -Induced TLR2 Interactome Analysis Reveals Association with PARP9. J Dent Res 2024;:220345231222181.

is a Gram-negative anaerobic bacterium strongly associated with periodontal disease. Toll-like receptor 2 (TLR2) is indispensable for the host response to , but escapes from immune clearance via TLR2-dependent activation of phosphoinositide-3-kinase (PI3K). To probe the TLR2-dependent escape pathway of , we analyzed the TLR2 interactome induced following infection or activation by a synthetic lipopeptide TLR2/1 agonist on human macrophages overexpressing TLR2. Interacting proteins were stabilized by cross-linking and then immunoprecipitated and analyzed by mass spectrometry. In total, 792 proteins were recovered and network analysis enabled mapping of the TLR2 interactome at baseline and in response to infection. The infection-induced TLR2 interactome included the poly (ADP-ribose) polymerase family member mono-ADP-ribosyltransferase protein 9 (PARP9) and additional members of the PARP9 complex (DTX3L and NMI). PARP9 and its complex members are highly upregulated in macrophages exposed to or to the synthetic TLR2/1 ligand PamCys-Ser-(Lys) (PAM). Consistent with its known role in virally induced interferon production, PARP9 knockdown blocked type I interferon (IFN-I) production in response to and reduced inflammatory cytokine production. We found that drives signal transducer and activation of transcription (STAT) 1 (S727) phosphorylation through TLR2-PARP9, explaining PARP9's role in the induction of IFN-I downstream of TLR2. Furthermore, PARP9 knockdown reduced PI3K activation by , leading to improved macrophage bactericidal activity. In summary, PARP9 is a novel TLR2 interacting partner that enables IFN-I induction and immune escape in macrophages downstream of TLR2 sensing.

Benyamini H, Kling Y, Yakovlev L, Becker Cohen M, Nevo Y, Elgavish S, Harazi A, Argov Z, Sela I, Mitrani-Rosenbaum S. Upregulation of Hallmark Muscle Genes Protects GneM743T/M743T Mutated Knock-In Mice From Kidney and Muscle Phenotype [Internet]. J Neuromuscul Dis 2020;7:119-136.Available from: https://pubmed.ncbi.nlm.nih.gov/31985472/ PubMed
BACKGROUND: Mutations in GNE cause a recessive, adult onset myopathy characterized by slowly progressive distal and proximal muscle weakness. Knock-in mice carrying the most frequent mutation in GNE myopathy patients, GneM743T/M743T, usually die few days after birth from severe renal failure, with no muscle phenotype. However, a spontaneous sub-colony remains healthy throughout a normal lifespan without any kidney or muscle pathology. OBJECTIVE: We attempted to decipher the molecular mechanisms behind these phenotypic differences and to determine the mechanisms preventing the kidney and muscles from disease. METHODS: We analyzed the transcriptome and proteome of kidneys and muscles of sick and healthy GneM743T/M743T mice. RESULTS: The sick GneM743T/M743T kidney was characterized by up-regulation of extra-cellular matrix degradation related processes and by down-regulation of oxidative phosphorylation and respiratory electron chain pathway, that was also observed in the asymptomatic muscles. Surprisingly, the healthy kidneys of the GneM743T/M743T mice were characterized by up-regulation of hallmark muscle genes. In addition the asymptomatic muscles of the sick GneM743T/M743T mice showed upregulation of transcription and translation processes. CONCLUSIONS: Overexpression of muscle physiology genes in healthy GneM743T/M743T mice seems to define the protecting mechanism in these mice. Furthermore, the strong involvement of muscle related genes in kidney may bridge the apparent phenotypic gap between GNE myopathy and the knock-in GneM743T/M743T mouse model and provide new directions in the study of GNE function in health and disease.