Acknowledgments

Zaffran I, Zoabi Y, Gaur P, Alekberli FRahimli, Tiligada E, Yutkin V, Levi-Schaffer F. Eosinophils but not mast cells exert anti-tumorigenic activity, without being predictive markers of the long-term response to Bacillus Calmette-Guérin (BCG) therapy in patients with bladder carcinoma [Internet]. Inflamm ResInflammation research : official journal of the European Histamine Research Society .. [et al.] 2025;74(1):68.Available from: https://pubmed.ncbi.nlm.nih.gov/40272538/ PubMed
BACKGROUND: Bacillus Calmette-Guerin (BCG) therapy is an established immunotherapy for non-muscle invasive bladder cancer (NMIBC); however, the response variability of patients remains a challenge, necessitating insight into immune cell function. Previous studies established that a preexisting Th2 immune microenvironment correlates with a positive BCG therapy outcome. Therefore, in this study, we explored the role of mast cells (MCs) and eosinophils in bladder cancer as a potential predicting tool for BCG immunotherapy response. METHODS: We investigated the effect of MCs and eosinophils on bladder cancer cell viability together with their chemotactic migration towards cancer cells in vitro. The effect of BCG on these immune cells was also evaluated. Moreover, we performed an orthotopic model of bladder cancer in MC- and eosinophil-deficient mice. Finally, to evaluate whether these immune cells predict the therapy response, 26 patient biopsies pre-BCG treatment were analyzed for MC and eosinophil numbers in the tissue and sequenced for gene expression. RESULTS: Eosinophils, but not MCs, reduced bladder cancer cell viability in vitro and inhibited tumor growth in vivo. However, addition of BCG did not increase these effects in vitro. Patient biopsy analysis and mRNA sequencing showed that neither cell type predicted long-term therapy responsiveness. Gene expression analysis suggested that extracellular matrix and epithelial-to-mesenchymal transition factors could influence BCG therapy outcomes. CONCLUSION: Even though eosinophils exhibit anti-tumorigenic effects in bladder cancer, neither MCs nor eosinophils were predictive of the long-term BCG therapy response. However, our findings implicate that matrix-related factors may modulate BCG therapy responses.
Dayan J, Uni Z. Gene ontology defines pre-post- hatch energy dynamics in the complexus muscle of broiler chickens [Internet]. BMC GenomicsBMC genomics 2024;25(1):1180.Available from: https://pubmed.ncbi.nlm.nih.gov/39633257/ PubMed
BACKGROUND: Chicken embryos emerge from their shell by the piercing movement of the hatching muscle. Although considered a key player during hatching, with activity that imposes a substantial metabolic demand, data are still limited. The study provides a bioenergetic and transcriptomic analyses during the pre-post-hatching period. METHODS: Weight and morphology alongside content determination of creatine and glycogen were analysed. Transcriptome identified differentially expressed genes and enriched biological processes associated with hatching muscle development, catabolism, and energy provision. Using gene set enrichment, we followed the dynamics of gene-sets involved in energy pathways of oxidative phosphorylation, protein catabolism, glycolysis/gluconeogenesis, and glycogen metabolism. RESULTS: Results show several significant findings: (A) Creatine plays a crucial role in the energy metabolism of the hatching muscle, with its concentration remaining stable while glycogen concentration is depleted at hatch and placement. (B) The hatching muscle has the capacity for de-novo creatine synthesis, as indicated by the expression of related genes (AGAT, GAMT). (C) Transcriptome provided insights into genes related to energy pathways under conditions of pre-hatch oxygen and post-hatch glucose limitations (oxidative phosphorylation: NDUF, MT-ND, SDH, UQCR, COX, MT-CO, ATP5, MT-ATP; glycolysis/gluconeogenesis: FBP,G6PC, PFKM; glycogen metabolism: PPP1, PYGL, GYG1). (D) The post-hatch upregulation of protein catabolic processes genes (PSMA, RNF, UBE, FBX), which align with the muscle's weight dynamics, indicates a functional shift from movement during hatching to lifting the head during feeding. CONCLUSIONS: There is a dynamic metabolic switch in the hatching muscle during embryo-to-hatchling transition. When glycogen concentration depletes, energy supply is maintained by creatine and its de-novo synthesis. Understanding the hatching muscle's energy dynamics is crucial, for reducing hatching failures in endangered avian species, and in domesticated chickens.
Netanely Y, Barel O, Naamneh R, Jaber Y, Yacoub S, Saba Y, Zubeidat K, Saar O, Eli-Berchoer L, Yona S, Brand A, Capucha T, Wilensky A, Loser K, Clausen BE, Hovav A-H. Epithelial RANKL Limits Experimental Periodontitis via Langerhans Cells [Internet]. J Dent Res 2024;:220345241274370.Available from: https://pubmed.ncbi.nlm.nih.gov/39370697/ PubMed

Due to its capacity to drive osteoclast differentiation, the receptor activator of nuclear factor kappa-β ligand (RANKL) is believed to exert a pathological influence in periodontitis. However, RANKL was initially identified as an activator of dendritic cells (DCs), expressed by T cells, and exhibits diverse effects on the immune system. Hence, it is probable that RANKL, acting as a bridge between the bone and immune systems, plays a more intricate role in periodontitis. Using ligature-induced periodontitis (LIP), rapid alveolar bone loss was detected that was later halted even though the ligature was still present. This late phase of LIP was also linked with immunosuppressive conditions in the gingiva. Further investigation revealed that the ligature prompted an immediate migration of RANK-expressing Langerhans cells (LCs) and EpCAM DCs, the antigen-presenting cells (APCs) of the gingival epithelium, to the lymph nodes, followed by an expansion of T regulatory (Treg) cells in the gingiva. Subsequently, the ligatured gingiva was repopulated by monocyte-derived RANK-expressing EpCAM DCs, while gingival epithelial cells upregulated RANKL expression. Blocking RANKL signaling with monoclonal antibodies significantly reduced the frequencies of Treg cells in the gingiva and prevented gingival immunosuppression. In addition, RANKL signaling facilitated the differentiation of LCs from bone marrow precursors. To further investigate the role of RANKL, we used K14-RANKL mice, in which RANKL is overexpressed by gingival epithelial cells. The elevated RANKL expression shifted the steady-state frequencies of LCs and EpCAM DCs within the epithelium, favoring LCs over EpCAM DCs. Following ligature placement, heightened levels of Treg cells were observed in the gingiva of K14-RANKL mice, and alveolar bone loss was significantly reduced. These findings suggest that RANKL-RANK interactions between gingival epithelial cells and APCs are crucial for suppressing gingival inflammation, highlighting a protective immunological role for RANKL in periodontitis that was overlooked due to its osteoclastogenic activity.

Makayes Y, Abergel E, Amleh A, Varshavsky DBinyamin, Fok R, Azria B, Ansari I, Bergman Y, Nechama M, Volovelsky O. Maternal Malnutrition in Mice Impairs Nephrogenesis by Disrupting DNA Methylation of Regulatory Regions [Internet]. Am J Physiol Renal Physiol 2024;Available from: https://pubmed.ncbi.nlm.nih.gov/39417827/ PubMed

Maternal caloric restriction during pregnancy significantly impacts kidney development, influencing susceptibility to chronic kidney disease in adulthood. This study explores DNA methylation changes in nephron progenitor cells resulting from caloric restriction and their implications for kidney health. Global DNA hypomethylation is observed in nephron progenitors from caloric-restricted embryos, with specific genomic regions displaying distinct methylation patterns, including hypomethylation and hypermethylation. Differentially methylated regions exhibit enhanced chromatin accessibility, indicating biological relevance. Hypomethylated regions are enriched for genes associated with developmental processes, reflecting changes in gene expression and highlighting their functional relevance in kidney development. The study also reveals that supplementing methionine, an essential amino acid, restores disrupted DNA methylation patterns, particularly in enhancer regions, emphasizing methionine's critical role in regulating nephron progenitor cell epigenetics and ensuring proper kidney development. The intricate relationship between maternal nutrition, dynamic DNA methylation, and kidney development is highlighted, emphasizing the enduring impact of early-life nutritional challenges on kidney function. This research elucidates epigenetic mechanisms as mediators for the lasting effects of maternal caloric restriction on kidney health. The study contributes valuable insights into the origins of chronic kidney diseases during early developmental stages, offering potential interventions to mitigate adverse outcomes.

Permyakova A, Hamad S, Hinden L, Baraghithy S, Kogot-Levin A, Yosef O, Shalev O, Tripathi MK, Amal H, Basu A, Arif M, Cinar R, Kunos G, Berger M, Leibowitz G, Tam J. Renal Mitochondrial ATP Transporter Ablation Ameliorates Obesity-Induced CKD. J Am Soc Nephrol 2024;

This study sheds light on the central role of adenine nucleotide translocase 2 (ANT2) in the pathogenesis of obesity-induced CKD. Our data demonstrate that ANT2 depletion in renal proximal tubule cells (RPTCs) leads to a shift in their primary metabolic program from fatty acid oxidation to aerobic glycolysis, resulting in mitochondrial protection, cellular survival, and preservation of renal function. These findings provide new insights into the underlying mechanisms of obesity-induced CKD and have the potential to be translated toward the development of targeted therapeutic strategies for this debilitating condition.

Srivastava R, Horwitz M, Hershko-Moshe A, Bronstein S, Ben-Dov IZ, Melloul D. Posttranscriptional regulation of the prostaglandin E receptor spliced-isoform EP3-γ and its implication in pancreatic β-cell failure. FASEB J. 2023;37:e22958.
In Type 2 diabetes (T2D), elevated lipid levels have been suggested to contribute to insulin resistance and β-cell dysfunction. We previously reported that the expression of the PGE2 receptor EP3 is elevated in islets of T2D individuals and is preferentially stimulated by palmitate, leading to β-cell failure. The mouse EP3 receptor generates three isoforms by alternative splicing which differ in their C-terminal domain and are referred to as mEP3α, mEP3β, and mEP3γ. We bring evidence that the expression of the mEP3γ isoform is elevated in islets of diabetic db/db mice and is selectively upregulated by palmitate. Specific knockdown of the mEP3γ isoform restores the expression of β-cell-specific genes and rescues MIN6 cells from palmitate-induced dysfunction and apoptosis. This study indicates that palmitate stimulates the expression of the mEP3γ by a posttranscriptional mechanism, compared to the other spliced isoforms, and that the de novo synthesized ceramide plays an important role in FFA-induced mEP3γ expression in β-cells. Moreover, induced levels of mEP3γ mRNA by palmitate or ceramide depend on p38 MAPK activation. Our findings suggest that mEP3γ gene expression is regulated at the posttranscriptional level and defines the EP3 signaling axis as an important pathway mediating β-cell-impaired function and demise.
Babkoff A, Berner-Wygoda Y, Diment J, Kustanovich A, Zick A, Katz D, Grinshpun A. First female patient with a rare CIC-FOXO4-translocated sarcoma: A case report. Case Rep. Oncol. 2023;16:954–962.
Small round cell sarcoma is a group of undifferentiated malignancies arising in the bone and soft tissue, notable for Ewing sarcoma. Recently, a new World Health Organization classification has been introduced, including an additional subset of these sarcomas, named CIC-rearranged sarcoma. Within this group, CIC-FOXO4 translocation is an exceedingly rare fusion that has been reported only 4 times in the literature. Herein, we report in-depth the pathological, clinical, and molecular features of a CIC-FOXO4 translocation-driven tumor in a 46-year-old woman.
Franco M, Fassler R, Goldberg TS, Chole H, Herz Y, S Woodard H, Reichmann D, Bloch G. Substances in the mandibular glands mediate queen effects on larval development and colony organization in an annual bumble bee. Proc. Natl. Acad. Sci. U. S. A. 2023;120:e2302071120.
Social organization is commonly dynamic, with extreme examples in annual social insects, but little is known about the underlying signals and mechanisms. Bumble bee larvae with close contact to a queen do not differentiate into gynes, pupate at an earlier age, and are commonly smaller than siblings that do not contact a queen. We combined detailed observations, proteomics, microRNA transcriptomics, and gland removal surgery to study the regulation of brood development and division of labor in the annual social bumble bee Bombus terrestris. We found that regurgitates fed to larvae by queens and workers differ in their protein and microRNA composition. The proteome of the regurgitate overlaps significantly with that of the mandibular (MG) and hypopharyngeal glands (HPG), suggesting that these exocrine glands are sources of regurgitate proteins. The proteome of the MG and HPG, but not the salivary glands, differs between queens and workers, with caste-specificity preserved for the MG and regurgitate proteomes. Queens subjected to surgical removal of the MG showed normal behavior, brood care, and weight gain, but failed to shorten larval development. These findings suggest that substances in the queen MG are fed to larvae and influence their developmental program. We suggest that when workers emerge and contribute to larval feeding, they dilute the effects of the queen substances, until she can no longer manipulate the development of all larvae. Longer developmental duration may allow female larvae to differentiate into gynes rather than to workers, mediating the colony transition from the ergonomic to the reproductive phase.
Xia L, Komissarova A, Jacover A, Shovman Y, Arcila-Barrera S, Tornovsky-Babeay S, Prakashan MMol Jaya, Nasereddin A, Plaschkes I, Nevo Y, Shiff I, Yosefov-Levi O, Izhiman T, Medvedev E, Eilon E, Wilensky A, Yona S, Parnas O. Systematic identification of gene combinations to target in innate immune cells to enhance T cell activation. Nat. Commun. 2023;14:6295.
Genetic engineering of immune cells has opened new avenues for improving their functionality but it remains a challenge to pinpoint which genes or combination of genes are the most beneficial to target. Here, we conduct High Multiplicity of Perturbations and Cellular Indexing of Transcriptomes and Epitopes (HMPCITE-seq) to find combinations of genes whose joint targeting improves antigen-presenting cell activity and enhances their ability to activate T cells. Specifically, we perform two genome-wide CRISPR screens in bone marrow dendritic cells and identify negative regulators of CD86, that participate in the co-stimulation programs, including Chd4, Stat5b, Egr2, Med12, and positive regulators of PD-L1, that participate in the co-inhibitory programs, including Sptlc2, Nckap1l, and Pi4kb. To identify the genetic interactions between top-ranked genes and find superior combinations to target, we perform high-order Perturb-Seq experiments and we show that targeting both Cebpb and Med12 results in a better phenotype compared to the single perturbations or other combinations of perturbations.
Jaber Y, Netanely Y, Naamneh R, Saar O, Zubeidat K, Saba Y, Georgiev O, Kles P, Barel O, Horev Y, Yosef O, Eli-Berchoer L, Nadler C, Betser-Cohen G, Shapiro H, Elinav E, Wilensky A, Hovav A-H. Langerhans cells shape postnatal oral homeostasis in a mechanical-force-dependent but microbiota and IL17-independent manner. Nat. Commun. 2023;14:5628.
The postnatal interaction between microbiota and the immune system establishes lifelong homeostasis at mucosal epithelial barriers, however, the barrier-specific physiological activities that drive the equilibrium are hardly known. During weaning, the oral epithelium, which is monitored by Langerhans cells (LC), is challenged by the development of a microbial plaque and the initiation of masticatory forces capable of damaging the epithelium. Here we show that microbial colonization following birth facilitates the differentiation of oral LCs, setting the stage for the weaning period, in which adaptive immunity develops. Despite the presence of the challenging microbial plaque, LCs mainly respond to masticatory mechanical forces, inducing adaptive immunity, to maintain epithelial integrity that is also associated with naturally occurring alveolar bone loss. Mechanistically, masticatory forces induce the migration of LCs to the lymph nodes, and in return, LCs support the development of immunity to maintain epithelial integrity in a microbiota-independent manner. Unlike in adult life, this bone loss is IL-17-independent, suggesting that the establishment of oral mucosal homeostasis after birth and its maintenance in adult life involve distinct mechanisms.
Mitrani-Rosenbaum S, Attali R, Argov Z. GNE myopathy: can homozygous asymptomatic subjects give a clue for the identification of protective factors?. Neuromuscul Disord 2023;33(10):762-768.

GNE myopathy is caused by bi allelic recessive mutations in the GNE gene. The largest identified cohort of GNE myopathy patients carries a homozygous mutation- M743T (the "Middle Eastern" mutation). More than 160 such patients in 67 families have been identified by us. Mean onset in this cohort is 30 years (range 17-48) with variable disease severity. However, we have identified two asymptomatic females, homozygous for M743T in two different families, both with affected siblings. The first showed no myopathy when examined at age 76 years. The second has no sign of disease at age 60 years. Since both agreed only for testing of blood, we performed exome and RNA sequencing of their blood and that of their affected siblings. Various filtering layers resulted in 2723 variant loci between symptomatic and asymptomatic individuals, representing 1364 genes. Among those, 39 genes are known to be involved in neuromuscular diseases, and only in two of them the variant is located in the proper exon coding region, resulting in a missense change. Surprisingly, only 27 genes were significantly differentially expressed between the asymptomatic and the GNE myopathy affected individuals, with three overexpressed genes overlapping between exome and RNA sequencing. Although unable to unravel robust candidate genes, mostly because of the very low number of asymptomatic individuals analyzed, and because of the tissue analyzed (blood and not muscle), this study resulted in relatively restricted potential candidate protective genes, emphasizing the power of using polarized phenotypes (completely asymptomatic vs clearly affected individuals) with the same genotype to unmask those genes which could be used as targets for disease course modifiers.

Amleh A, Chen HPri, Watad L, Abramovich I, Agranovich B, Gottlieb E, Ben-Dov IZ, Nechama M, Volovelsky O. Arginine depletion attenuates renal cystogenesis in tuberous sclerosis complex model. Cell Rep Med 2023;4(6):101073.

Cystic kidney disease is a leading cause of morbidity in patients with tuberous sclerosis complex (TSC). We characterize the misregulated metabolic pathways using cell lines, a TSC mouse model, and human kidney sections. Our study reveals a substantial perturbation in the arginine biosynthesis pathway in TSC models with overexpression of argininosuccinate synthetase 1 (ASS1). The rise in ASS1 expression is dependent on the mechanistic target of rapamycin complex 1 (mTORC1) activity. Arginine depletion prevents mTORC1 hyperactivation and cell cycle progression and averts cystogenic signaling overexpression of c-Myc and P65. Accordingly, an arginine-depleted diet substantially reduces the TSC cystic load in mice, indicating the potential therapeutic effects of arginine deprivation for the treatment of TSC-associated kidney disease.

Srivastava R, Horwitz M, Hershko-Moshe A, Bronstein S, Ben-Dov IZ, Melloul D. Posttranscriptional regulation of the prostaglandin E receptor spliced-isoform EP3-γ and its implication in pancreatic β-cell failure. FASEB J 2023;37(6):e22958.

In Type 2 diabetes (T2D), elevated lipid levels have been suggested to contribute to insulin resistance and β-cell dysfunction. We previously reported that the expression of the PGE2 receptor EP3 is elevated in islets of T2D individuals and is preferentially stimulated by palmitate, leading to β-cell failure. The mouse EP3 receptor generates three isoforms by alternative splicing which differ in their C-terminal domain and are referred to as mEP3α, mEP3β, and mEP3γ. We bring evidence that the expression of the mEP3γ isoform is elevated in islets of diabetic db/db mice and is selectively upregulated by palmitate. Specific knockdown of the mEP3γ isoform restores the expression of β-cell-specific genes and rescues MIN6 cells from palmitate-induced dysfunction and apoptosis. This study indicates that palmitate stimulates the expression of the mEP3γ by a posttranscriptional mechanism, compared to the other spliced isoforms, and that the de novo synthesized ceramide plays an important role in FFA-induced mEP3γ expression in β-cells. Moreover, induced levels of mEP3γ mRNA by palmitate or ceramide depend on p38 MAPK activation. Our findings suggest that mEP3γ gene expression is regulated at the posttranscriptional level and defines the EP3 signaling axis as an important pathway mediating β-cell-impaired function and demise.

Philosoph AM, Dombrovsky A, Luria N, Sela N, Elad Y, Frenkel O. Rapid defense mechanism suppression during viral- oomycete disease complex formation. Front Plant Sci 2023;14:1124911.

Combined infection of the host plant with pathogens involving different parasitic lifestyles may result in synergistic effects that intensify disease symptoms. Understanding the molecular dynamics during concurrent infection provides essential insight into the host response. The transcriptomic pattern of cucumber plants infected with a necrotrophic pathogen, , and a biotrophic pathogen, Cucumber green mottle mosaic virus (CGMMV) was studied at different time points, under regimes of single and co-infection. Analysis of CGMMV infection alone revealed a mild influence on host gene expression at the stem base, while the infection by is associated with drastic changes in gene expression. Comparing as a single infecting pathogen with a later co-infection by CGMMV revealed a rapid host response as early as 24 hours post-CGMMV inoculation with a sharp downregulation of genes related to the host defense mechanism against the necrotrophic pathogen. Suppression of the defense mechanism of co-infected plants was followed by severe stress, including 30% plants mortality and an increase of the hyphae. The first evidence of defense recovery against the necrotrophic pathogen only occurred 13 days post-viral infection. These results support the hypothesis that the viral infection of the Pythium pre-infected plants subverted the host defense system and changed the equilibrium obtained with . It also implies a time window in which the plants are most susceptible to after CGMMV infection.

Haran A, Bergel M, Kleiman D, Hefetz L, Israeli H, Weksler-Zangen S, Agranovich B, Abramovich I, Ben-Haroush Schyr R, Gottlieb E, Ben-Zvi D. Differential effects of bariatric surgery and caloric restriction on hepatic one-carbon and fatty acid metabolism. iScience 2023;26(7):107046.

Weight loss interventions, including dietary changes, pharmacotherapy, or bariatric surgery, prevent many of the adverse consequences of obesity, and may also confer intervention-specific benefits beyond those seen with decreased weight alone. We compared the molecular effects of different interventions on liver metabolism to understand the mechanisms underlying these benefits. Male rats on a high-fat, high-sucrose diet underwent sleeve gastrectomy (SG) or intermittent fasting with caloric restriction (IF-CR), achieving equivalent weight loss. The interventions were compared to (AL)-fed controls. Analysis of liver and blood metabolome and transcriptome revealed distinct and sometimes contrasting metabolic effects between the two interventions. SG primarily influenced one-carbon metabolic pathways, whereas IF-CR increased lipogenesis and glycogen storage. These findings suggest that the unique metabolic pathways affected by SG and IF-CR contribute to their distinct clinical benefits, with bariatric surgery potentially influencing long-lasting changes through its effect on one-carbon metabolism.