orthology (zebrafish)

Mitrani-Rosenbaum S, Attali R, Argov Z. GNE myopathy: can homozygous asymptomatic subjects give a clue for the identification of protective factors?. Neuromuscul Disord 2023;33(10):762-768.

GNE myopathy is caused by bi allelic recessive mutations in the GNE gene. The largest identified cohort of GNE myopathy patients carries a homozygous mutation- M743T (the "Middle Eastern" mutation). More than 160 such patients in 67 families have been identified by us. Mean onset in this cohort is 30 years (range 17-48) with variable disease severity. However, we have identified two asymptomatic females, homozygous for M743T in two different families, both with affected siblings. The first showed no myopathy when examined at age 76 years. The second has no sign of disease at age 60 years. Since both agreed only for testing of blood, we performed exome and RNA sequencing of their blood and that of their affected siblings. Various filtering layers resulted in 2723 variant loci between symptomatic and asymptomatic individuals, representing 1364 genes. Among those, 39 genes are known to be involved in neuromuscular diseases, and only in two of them the variant is located in the proper exon coding region, resulting in a missense change. Surprisingly, only 27 genes were significantly differentially expressed between the asymptomatic and the GNE myopathy affected individuals, with three overexpressed genes overlapping between exome and RNA sequencing. Although unable to unravel robust candidate genes, mostly because of the very low number of asymptomatic individuals analyzed, and because of the tissue analyzed (blood and not muscle), this study resulted in relatively restricted potential candidate protective genes, emphasizing the power of using polarized phenotypes (completely asymptomatic vs clearly affected individuals) with the same genotype to unmask those genes which could be used as targets for disease course modifiers.

Livne H, Avital T, Ruppo S, Harazi A, Mitrani-Rosenbaum S, Daya A. Generation and characterization of a novel gne Knockout Model in Zebrafish. Front Cell Dev Biol 2022;10:976111.
GNE Myopathy is a rare, recessively inherited neuromuscular worldwide disorder, caused by a spectrum of bi-allelic mutations in the human GNE gene. GNE encodes a bi-functional enzyme responsible for the rate-limiting step of sialic acid biosynthesis pathway. However, the process in which GNE mutations lead to the development of a muscle pathology is not clear yet. Cellular and mouse models for GNE Myopathy established to date have not been informative. Further, additional GNE functions in muscle have been hypothesized. In these studies, we aimed to investigate gne functions using zebrafish genetic and transgenic models, and characterized them using macroscopic, microscopic, and molecular approaches. We first established transgenic zebrafish lineages expressing the human GNE cDNA carrying the M743T mutation, driven by the zebrafish gne promoter. These fish developed entirely normally. Then, we generated a gne knocked-out (KO) fish using the CRISPR/Cas9 methodology. These fish died 8-10 days post-fertilization (dpf), but a phenotype appeared less than 24 h before death and included progressive body axis curving, deflation of the swim bladder and decreasing movement and heart rate. However, muscle histology uncovered severe defects, already at 5 dpf, with compromised fiber organization. Sialic acid supplementation did not rescue the larvae from this phenotype nor prolonged their lifespan. To have deeper insights into the potential functions of gne in zebrafish, RNA sequencing was performed at 3 time points (3, 5, and 7 dpf). Genotype clustering was progressive, with only 5 genes differentially expressed in gne KO compared to gne WT siblings at 3 dpf. Enrichment analyses of the primary processes affected by the lack of gne also at 5 and 7 dpf point to the involvement of cell cycle and DNA damage/repair processes in the gne KO zebrafish. Thus, we have established a gne KO zebrafish lineage and obtained new insights into gne functions. This is the only model where GNE can be related to clear muscle defects, thus the only animal model relevant to GNE Myopathy to date. Further elucidation of gne precise mechanism-of-action in these processes could be relevant to GNE Myopathy and allow the identification of novel therapeutic targets.
Ilouz N, Harazi A, Guttman M, Daya A, Ruppo S, Yakovlev L, Mitrani-Rosenbaum S. In vivo and in vitro genome editing to explore GNE functions. Front Genome Ed 2022;4:930110.
GNE myopathy is an adult onset neuromuscular disorder characterized by slowly progressive distal and proximal muscle weakness, caused by missense recessive mutations in the GNE gene. Although the encoded bifunctional enzyme is well known as the limiting factor in the biosynthesis of sialic acid, no clear mechanisms have been recognized to account for the muscle atrophic pathology, and novel functions for GNE have been hypothesized. Two major issues impair studies on this protein. First, the expression of the GNE protein is minimal in human and mice muscles and there is no reliable antibody to follow up endogenous expression. Second, no reliable animal model is available for the disease and cellular models from GNE myopathy patients' muscle cells (expressing the mutated protein) are less informative than expected. In order to broaden our knowledge on GNE functions in muscle, we have taken advantage of the CRISPR/Cas9 method for genome editing to first, add a tag to the endogenous Gne gene in mouse, allowing the determination of the spatiotemporal expression of the protein in the organism, using well established and reliable antibodies against the specific tag. In addition we have generated a Gne knock out murine muscle cell lineage to identify the events resulting from the total lack of the protein. A thorough multi-omics analysis of both cellular systems including transcriptomics, proteomics, phosphoproteomics and ubiquitination, unraveled novel pathways for Gne, in particular its involvement in cell cycle control and in the DNA damage/repair pathways. The elucidation of fundamental mechanisms of Gne in normal muscle may contribute to the identification of the disrupted functions in GNE myopathy, thus, to the definition of novel biomarkers and possible therapeutic targets for this disease.
Bogoch Y, Jamieson-Lucy A, Vejnar CE, Levy K, Giraldez AJ, Mullins MC, Elkouby YM. Stage Specific Transcriptomic Analysis and Database for Zebrafish Oogenesis. Front Cell Dev Biol 2022;10:826892.
Oogenesis produces functional eggs and is essential for fertility, embryonic development, and reproduction. The zebrafish ovary is an excellent model to study oogenesis in vertebrates, and recent studies have identified multiple regulators in oocyte development through forward genetic screens, as well as reverse genetics by CRISPR mutagenesis. However, many developmental steps in oogenesis, in zebrafish and other species, remain poorly understood, and their underlying mechanisms are unknown. Here, we take a genomic approach to systematically uncover biological activities throughout oogenesis. We performed transcriptomic analysis on five stages of oogenesis, from the onset of oocyte differentiation through Stage III, which precedes oocyte maturation. These transcriptomes revealed thousands of differentially expressed genes across stages of oogenesis. We analyzed trends of gene expression dynamics along oogenesis, as well as their expression in pair-wise comparisons between stages. We determined their functionally enriched terms, identifying uniquely characteristic biological activities in each stage. These data identified two prominent developmental phases in oocyte differentiation and traced the accumulation of maternally deposited embryonic regulator transcripts in the developing oocyte. Our analysis provides the first molecular description for oogenesis in zebrafish, which we deposit online as a resource for the community. Further, the presence of multiple gene paralogs in zebrafish, and the exclusive curation by many bioinformatic tools of the single paralogs present in humans, challenge zebrafish genomic analyses. We offer an approach for converting zebrafish gene name nomenclature to the human nomenclature for supporting genomic analyses generally in zebrafish. Altogether, our work provides a valuable resource as a first step to uncover oogenesis mechanisms and candidate regulators and track accumulating transcripts of maternal regulators of embryonic development.