Zlotnik D, Rabinski T, Halfon A, Anzi S, Plaschkes I, Benyamini H, Nevo Y, Gershoni OY, Rosental B, Hershkovitz E, Ben-Zvi A, Vatine GD. P450 oxidoreductase regulates barrier maturation by mediating retinoic acid metabolism in a model of the human BBB. Stem Cell Reports 2022;The blood-brain barrier (BBB) selectively regulates the entry of molecules into the central nervous system (CNS). A crosstalk between brain microvascular endothelial cells (BMECs) and resident CNS cells promotes the acquisition of functional tight junctions (TJs). Retinoic acid (RA), a key signaling molecule during embryonic development, is used to enhance in vitro BBB models' functional barrier properties. However, its physiological relevance and affected pathways are not fully understood. P450 oxidoreductase (POR) regulates the enzymatic activity of microsomal cytochromes. POR-deficient (PORD) patients display impaired steroid homeostasis and cognitive disabilities. Here, we used both patient-specific POR-deficient and CRISPR-Cas9-mediated POR-depleted induced pluripotent stem cell (iPSC)-derived BMECs (iBMECs) to study the role of POR in the acquisition of functional barrier properties. We demonstrate that POR regulates cellular RA homeostasis and that POR deficiency leads to the accumulation of RA within iBMECs, resulting in the impaired acquisition of TJs and, consequently, to dysfunctional development of barrier properties.
Stokar J, Gurt I, Cohen-Kfir E, Yakubovsky O, Hallak N, Benyamini H, Lishinsky N, Offir N, Tam J, Dresner-Pollak R. Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice [Internet]. Mol Metab 2022;60:101482.Available from: https://pubmed.ncbi.nlm.nih.gov/35364299/ PubMedOBJECTIVE: Menopause is associated with visceral adiposity, hepatic steatosis and increased risk for cardiovascular disease. As estrogen replacement therapy is not suitable for all postmenopausal women, a need for alternative therapeutics and biomarkers has emerged. METHODS: 9-week-old C57BL/6 J female mice were subjected to ovariectomy (OVX) or SHAM surgery (n = 10 per group), fed a standard diet and sacrificed 6- & 12 weeks post-surgery. RESULTS: Increased weight gain, hepatic triglyceride content and changes in hepatic gene expression of Cyp17a1, Rgs16, Fitm1 as well as Il18, Rares2, Retn, Rbp4 in mesenteric visceral adipose tissue (VAT) were observed in OVX vs. SHAM. Liver RNA-sequencing 6-weeks post-surgery revealed changes in genes and microRNAs involved in fat metabolism in OVX vs. SHAM mice. Energy Homeostasis Associated gene (Enho) coding for the hepatokine adropin was significantly reduced in OVX mice livers and strongly inversely correlated with weight gain (r = -0.7 p < 0.001) and liver triglyceride content (r = -0.4, p = 0.04), with a similar trend for serum adropin. In vitro, Enho expression was tripled by 17β-estradiol in BNL 1 ME liver cells with increased adropin in supernatant. Analysis of open-access datasets revealed increased hepatic Enho expression in estrogen treated OVX mice and estrogen dependent ERα binding to Enho. Treatment of 5-month-old OVX mice with Adropin (i.p. 450 nmol/kg/twice daily, n = 4,5 per group) for 6-weeks reversed adverse adipokine gene expression signature in VAT, with a trended increase in lean body mass and decreased liver TG content with upregulation of Rgs16. CONCLUSIONS: OVX is sufficient to induce deranged metabolism in adult female mice. Hepatic adropin is regulated by estrogen, negatively correlated with adverse OVX-induced metabolic phenotypes, which were partially reversed with adropin treatment. Adropin should be further explored as a potential therapeutic target and biomarker for menopause-related metabolic derangement.
Shore T, Levi T, Kalifa R, Dreifuss A, Rekler D, Weinberg-Shukron A, Nevo Y, Bialistoky T, Moyal V, Gold MY, Leebhoff S, Zangen D, Deshpande G, Gerlitz O. Nucleoporin107 mediates female sexual differentiation via Dsx [Internet]. Elife 2022;11Available from: https://pubmed.ncbi.nlm.nih.gov/35311642/ PubMedWe recently identified a missense mutation in Nucleoporin107 (Nup107; D447N) underlying XX-ovarian-dysgenesis, a rare disorder characterized by underdeveloped and dysfunctional ovaries. Modeling of the human mutation in Drosophila or specific knockdown of Nup107 in the gonadal soma resulted in ovarian-dysgenesis-like phenotypes. Transcriptomic analysis identified the somatic sex-determination gene doublesex (dsx) as a target of Nup107. Establishing Dsx as a primary relevant target of Nup107, either loss or gain of Dsx in the gonadal soma is sufficient to mimic or rescue the phenotypes induced by Nup107 loss. Importantly, the aberrant phenotypes induced by compromising either Nup107 or dsx are reminiscent of bone morphogenetic protein (BMP signaling hyperactivation). Remarkably, in this context, the metalloprotease AdamTS-A, a transcriptional target of both Dsx and Nup107, is necessary for the calibration of BMP signaling. As modulation of BMP signaling is a conserved critical determinant of soma-germline interaction, the sex- and tissue-specific deployment of Dsx-F by Nup107 seems crucial for the maintenance of the homeostatic balance between the germ cells and somatic gonadal cells.
Vorontsov O, Levitt L, Lilleri D, Vainer GW, Kaplan O, Schreiber L, Arossa A, Spinillo A, Furione M, Alfi O, Oiknine-Djian E, Kupervaser M, Nevo Y, Elgavish S, Yassour M, Zavattoni M, Bdolah-Abram T, Baldanti F, Geal-Dor M, Zakay-Rones Z, Yanay N, Yagel S, Panet A, Wolf DG. Amniotic fluid biomarkers predict the severity of congenital cytomegalovirus infection [Internet]. J Clin Invest 2022;132Available from: https://pubmed.ncbi.nlm.nih.gov/35439172/ PubMedBACKGROUNDCytomegalovirus (CMV) is the most common intrauterine infection, leading to infant brain damage. Prognostic assessment of CMV-infected fetuses has remained an ongoing challenge in prenatal care, in the absence of established prenatal biomarkers of congenital CMV (cCMV) infection severity. We aimed to identify prognostic biomarkers of cCMV-related fetal brain injury.METHODSWe performed global proteome analysis of mid-gestation amniotic fluid samples, comparing amniotic fluid of fetuses with severe cCMV with that of asymptomatic CMV-infected fetuses. The levels of selected differentially excreted proteins were further determined by specific immunoassays.RESULTSUsing unbiased proteome analysis in a discovery cohort, we identified amniotic fluid proteins related to inflammation and neurological disease pathways, which demonstrated distinct abundance in fetuses with severe cCMV. Amniotic fluid levels of 2 of these proteins - the immunomodulatory proteins retinoic acid receptor responder 2 (chemerin) and galectin-3-binding protein (Gal-3BP) - were highly predictive of the severity of cCMV in an independent validation cohort, differentiating between fetuses with severe (n = 17) and asymptomatic (n = 26) cCMV, with 100%-93.8% positive predictive value, and 92.9%-92.6% negative predictive value (for chemerin and Gal-3BP, respectively). CONCLUSIONAnalysis of chemerin and Gal-3BP levels in mid-gestation amniotic fluids could be used in the clinical setting to profoundly improve the prognostic assessment of CMV-infected fetuses.FUNDINGIsrael Science Foundation (530/18 and IPMP 3432/19); Research Fund - Hadassah Medical Organization.
Paldor M, Levkovitch-Siany O, Eidelshtein D, Adar R, Enk CD, Marmary Y, Elgavish S, Nevo Y, Benyamini H, Plaschkes I, Klein S, Mali A, Rose-John S, Peled A, Galun E, Axelrod JH. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis [Internet]. EMBO Mol Med 2022;14:e15653.Available from: https://pubmed.ncbi.nlm.nih.gov/35785521/ PubMedIrradiation-induced alopecia and dermatitis (IRIAD) are two of the most visually recognized complications of radiotherapy, of which the molecular and cellular basis remains largely unclear. By combining scRNA-seq analysis of whole skin-derived irradiated cells with genetic ablation and molecular inhibition studies, we show that senescence-associated IL-6 and IL-1 signaling, together with IL-17 upregulation and CCR6(+) -mediated immune cell migration, are crucial drivers of IRIAD. Bioinformatics analysis colocalized irradiation-induced IL-6 signaling with senescence pathway upregulation largely within epidermal hair follicles, basal keratinocytes, and dermal fibroblasts. Loss of cytokine signaling by genetic ablation in IL-6(-/-) or IL-1R(-/-) mice, or by molecular blockade, strongly ameliorated IRIAD, as did deficiency of CCL20/CCR6-mediated immune cell migration in CCR6(-/-) mice. Moreover, IL-6 deficiency strongly reduced IL-17, IL-22, CCL20, and CCR6 upregulation, whereas CCR6 deficiency reciprocally diminished IL-6, IL-17, CCL3, and MHC upregulation, suggesting that proximity-dependent cellular cross talk promotes IRIAD. Therapeutically, topical application of Janus kinase blockers or inhibition of T-cell activation by cyclosporine effectively reduced IRIAD, suggesting the potential of targeted approaches for the treatment of dermal side effects in radiotherapy patients.
Kolodkin-Gal D, Roitman L, Ovadya Y, Azazmeh N, Assouline B, Schlesinger Y, Kalifa R, Horwitz S, Khalatnik Y, Hochner-Ger A, Imam A, Demma JA, Winter E, Benyamini H, Elgavish S, Khatib AA, Meir K, Atlan K, Pikarsky E, Parnas O, Dor Y, Zamir G, Ben-Porath I, Krizhanovsky V. Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions [Internet]. Gut 2022;71:345-355.Available from: https://pubmed.ncbi.nlm.nih.gov/33649045/ PubMedOBJECTIVE: Cellular senescence limits tumourigenesis by blocking the proliferation of premalignant cells. Additionally, however, senescent cells can exert paracrine effects influencing tumour growth. Senescent cells are present in premalignant pancreatic intraepithelial neoplasia (PanIN) lesions, yet their effects on the disease are poorly characterised. It is currently unknown whether senolytic drugs, aimed at eliminating senescent cells from lesions, could be beneficial in blocking tumour development. DESIGN: To uncover the functions of senescent cells and their potential contribution to early pancreatic tumourigenesis, we isolated and characterised senescent cells from PanINs formed in a Kras-driven mouse model, and tested the consequences of their targeted elimination through senolytic treatment. RESULTS: We found that senescent PanIN cells exert a tumour-promoting effect through expression of a proinflammatory signature that includes high Cox2 levels. Senolytic treatment with the Bcl2-family inhibitor ABT-737 eliminated Cox2-expressing senescent cells, and an intermittent short-duration treatment course dramatically reduced PanIN development and progression to pancreatic ductal adenocarcinoma. CONCLUSIONS: These findings reveal that senescent PanIN cells support tumour growth and progression, and provide a first indication that elimination of senescent cells may be effective as preventive therapy for the progression of precancerous lesions.
Rosenberg N, Van Haele M, Lanton T, Brashi N, Bromberg Z, Adler H, Giladi H, Peled A, Goldenberg DS, Axelrod JH, Simerzin A, Chai C, Paldor M, Markezana A, Yaish D, Shemulian Z, Gross D, Barnoy S, Gefen M, Amran O, Claerhout S, Fernandez-Vaquero M, Garcia-Beccaria M, Heide D, Shoshkes-Carmel M, Schmidt Arras D, Elgavish S, Nevo Y, Benyamini H, Tirnitz-Parker JEE, Sanchez A, Herrera B, Safadi R, Kaestner KH, Rose-John S, Roskams T, Heikenwalder M, Galun E. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL6 trans-signaling [Internet]. J Hepatol 2022;Available from: https://pubmed.ncbi.nlm.nih.gov/35988690/ PubMedBACKGROUND AND AIMS: Primary liver cancers include: Hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors. METHOD: To trace progenitor cells during hepatocarcinogenesis, we generated Mdr2-KO mice that harbor an YFP reporter gene driven by the Foxl1 promoter which is expressed specifically in progenitor cells. These mice (Mdr2-KO(Foxl1-CRE;RosaYFP)) develop chronic inflammation and HCCs by the age of 14-16 months, followed by cHCC-CCA tumors at the age of 18 months, as we have first observed. RESULTS: In this Mdr2-KO(Foxl1-CRE;RosaYFP) mouse model, liver progenitor cells are the source of cHCC-CCA tumors, but not the source of HCC. Ablating the progenitors, caused reduction of cHCC-CCA tumors but did not affect HCCs. RNA-seq revealed enrichment of the IL6 signaling pathway in cHCC-CCA tumors compared to HCC tumors. ScRNA-seq analysis revealed that IL6 is expressed from immune and parenchymal cells in senescence, and that IL6 is part of the senescence-associated secretory phenotype (SASP). Administration of anti-IL6 Ab to Mdr2-KO(Foxl1-CRE;RosaYFP) mice, inhibited the development of cHCC-CCA tumors. By blocking IL6 trans-signaling, cHCC-CCA tumors decreased in number and size, indicating that cHCC-CCA is dependent on IL6 trans-signaling. Furthermore, the administration of a senolytic agent inhibited IL6 and the development of cHCC-CCA tumors. CONCLUSION: Our results demonstrate that cHCC-CCA, but not HCC tumors, originate from HPCs, and that IL6, which derives in part from cells in senescence, plays an important role in this process via IL6 trans-signaling. These findings could enhance new therapeutic approaches for cHCC-CCA liver cancer. LAY SUMMARY: Combined hepatocellular carcinoma - cholangiocarcinoma is the third prevalent liver cancer. We show that the source of this tumor is the liver tissue stem cells and that, this tumor type is dependent on an inflammatory signaling of IL6 and can be inhibited by blocking IL6 signaling or using a senolytic agent.
Heinberg A, Amit-Avraham I, Mitesser V, Simantov K, Goyal M, Nevo Y, Kandelis-Shalev S, Thompson E, Dzikowski R. A nuclear redox sensor modulates gene activation and var switching in Plasmodium falciparum [Internet]. Proc Natl Acad Sci U S A 2022;119:e2201247119.Available from: https://pubmed.ncbi.nlm.nih.gov/35939693/ PubMedThe virulence of Plasmodium falciparum, which causes the deadliest form of human malaria, is attributed to its ability to evade the human immune response. These parasites "choose" to express a single variant from a repertoire of surface antigens called PfEMP1, which are placed on the surface of the infected red cell. Immune evasion is achieved by switches in expression between var genes, each encoding a different PfEMP1 variant. While the mechanisms that regulate mutually exclusive expression of var genes are still elusive, antisense long-noncoding RNAs (lncRNAs) transcribed from the intron of the active var gene were implicated in the "choice" of the single active var gene. Here, we show that this lncRNA colocalizes with the site of var mRNA transcription and is anchored to the var locus via DNA:RNA interactions. We define the var lncRNA interactome and identify a redox sensor, P. falciparum thioredoxin peroxidase I (PfTPx-1), as one of the proteins associated with the var antisense lncRNA. We show that PfTPx-1 localizes to a nuclear subcompartment associated with active transcription on the nuclear periphery, in ring-stage parasite, when var transcription occurs. In addition, PfTPx-1 colocalizes with S-adenosylmethionine synthetase (PfSAMS) in the nucleus, and its overexpression leads to activation of var2csa, similar to overexpression of PfSAMS. Furthermore, we show that PfTPx-1 knockdown alters the var switch rate as well as activation of additional gene subsets. Taken together, our data indicate that nuclear PfTPx-1 plays a role in gene activation possibly by providing a redox-controlled nuclear microenvironment ideal for active transcription.
Douiev L, Miller C, Keller G, Benyamini H, Abu-Libdeh B, Saada A. Replicative Stress Coincides with Impaired Nuclear DNA Damage Response in COX4-1 Deficiency [Internet]. Int J Mol Sci 2022;23Available from: https://pubmed.ncbi.nlm.nih.gov/35456968/ PubMedCytochrome c oxidase (COX), a multimeric protein complex, is the final electron acceptor in the mitochondrial electron transfer chain. Primary COX deficiency, caused by mutations in either mitochondrial DNA or nuclear-encoded genes, is a heterogenous group of mitochondrial diseases with a wide range of presentations, ranging from fatal infantile to subtler. We previously reported a patient with primary COX deficiency due to a pathogenic variant in COX4I1 (encoding the common isoform of COX subunit 4, COX4-1), who presented with bone marrow failure, genomic instability, and short stature, mimicking Fanconi anemia (FA). In the present study, we demonstrated that accumulative DNA damage coincided primarily with proliferative cells in the patient's fibroblasts and in COX4i1 knockdown cells. Expression analysis implicated a reduction in DNA damage response pathways, which was verified by demonstrating impaired recovery from genotoxic insult and decreased DNA repair. The premature senescence of the COX4-1-deficient cells prevented us from undertaking additional studies; nevertheless, taken together, our results indicate replicative stress and impaired nuclear DNA damage response in COX4-1 deficiency. Interestingly, our in vitro findings recapitulated the patient's presentation and present status.
Sheinboim D, Parikh S, Parikh R, Menuchin A, Shapira G, Kapitansky O, Elkoshi N, Ruppo S, Shaham L, Golan T, Elgavish S, Nevo Y, Bell RE, Malcov-Brog H, Shomron N, Taub JW, Izraeli S, Levy C. Slow Transcription of the 99a/let-7c/125b-2 Cluster Results in Differential MiRNA Expression and Promotes Melanoma Phenotypic Plasticity [Internet]. J Invest Dermatol 2021;141:2944-2956.e6.Available from: https://pubmed.ncbi.nlm.nih.gov/34186058/ PubMedAlmost half of the human microRNAs (miRNAs) are encoded in clusters. Although transcribed as a single unit, the levels of individual mature miRNAs often differ. The mechanisms underlying differential biogenesis of clustered miRNAs and the resulting physiological implications are mostly unknown. In this study, we report that the melanoma master transcription regulator MITF regulates the differential expression of the 99a/let-7c/125b-2 cluster by altering the distribution of RNA polymerase II along the cluster. We discovered that MITF interacts with TRIM28, a known inhibitor of RNA polymerase II transcription elongation, at the mIR-let-7c region, resulting in the pausing of RNA polymerase II activity and causing an elevation in mIR-let-7c expression; low levels of RNA polymerase II occupation over miR-99a and miR-125b-2 regions decreases their biogenesis. Furthermore, we showed that this differential expression affects the phenotypic state of melanoma cells. RNA-sequencing analysis of proliferative melanoma cells that express miR-99a and miR-125b mimics revealed a transcriptomic shift toward an invasive phenotype. Conversely, expression of a mIR-let-7c mimic in invasive melanoma cells induced a shift to a more proliferative state. We confirmed direct target genes of these miRNAs, including FGFR3, BAP1, Bcl2, TGFBR1, and CDKN1A. Our study demonstrates an MITF-governed biogenesis mechanism that results in differential expression of clustered 99a/let-7c/125b-2 miRNAs that control melanoma progression.
Shriki A, Lanton T, Sonnenblick A, Levkovitch-Siany O, Eidelshtein D, Abramovitch R, Rosenberg N, Pappo O, Elgavish S, Nevo Y, Safadi R, Peled A, Rose-John S, Galun E, Axelrod JH. Multiple Roles of IL6 in Hepatic Injury, Steatosis, and Senescence Aggregate to Suppress Tumorigenesis [Internet]. Cancer Res 2021;81:4766-4777.Available from: https://pubmed.ncbi.nlm.nih.gov/34117031/ PubMedHepatocellular carcinoma (HCC) typically develops on a background of chronic hepatitis for which the proinflammatory cytokine IL6 is conventionally considered a crucial driving factor. Paradoxically, IL6 also acts as a hepatoprotective factor in chronic liver injury. Here we used the multidrug-resistant gene 2 knockout (Mdr2(-/-)) mouse model to elucidate potential roles of IL6 in chronic hepatitis-associated liver cancer. Long-term analysis of three separate IL6/Stat3 signaling-deficient Mdr2(-/-) strains revealed aggravated liver injury with increased dysplastic nodule formation and significantly accelerated tumorigenesis in all strains. Tumorigenesis in the IL6/Stat3-perturbed models was strongly associated with enhanced macrophage accumulation and hepatosteatosis, phenotypes of nonalcoholic steatohepatitis (NASH), as well as with significant reductions in senescence and the senescence-associated secretory phenotype (SASP) accompanied by increased hepatocyte proliferation. These findings reveal a crucial suppressive role for IL6/Stat3 signaling in chronic hepatitis-associated hepatocarcinogenesis by impeding protumorigenic NASH-associated phenotypes and by reinforcing the antitumorigenic effects of the SASP. SIGNIFICANCE: These findings describe a context-dependent role of IL6 signaling in hepatocarcinogenesis and predict that increased IL6-neutralizing sgp130 levels in some patients with NASH may herald early HCC development.See related commentary by Huynh and Ernst, p. 4671.
Douiev L, Miller C, Ruppo S, Benyamini H, Abu-Libdeh B, Saada A. Upregulation of COX4-2 via HIF-1α in Mitochondrial COX4-1 Deficiency [Internet]. Cells 2021;10Available from: https://pubmed.ncbi.nlm.nih.gov/33672589 PubMedCytochrome-c-oxidase (COX) subunit 4 (COX4) plays important roles in the function, assembly and regulation of COX (mitochondrial respiratory complex 4), the terminal electron acceptor of the oxidative phosphorylation (OXPHOS) system. The principal COX4 isoform, COX4-1, is expressed in all tissues, whereas COX4-2 is mainly expressed in the lungs, or under hypoxia and other stress conditions. We have previously described a patient with a COX4-1 defect with a relatively mild presentation compared to other primary COX deficiencies, and hypothesized that this could be the result of a compensatory upregulation of COX4-2. To this end, COX4-1 was downregulated by shRNAs in human foreskin fibroblasts (HFF) and compared to the patient's cells. COX4-1, COX4-2 and HIF-1α were detected by immunocytochemistry. The mRNA transcripts of both COX4 isoforms and HIF-1 target genes were quantified by RT-qPCR. COX activity and OXPHOS function were measured by enzymatic and oxygen consumption assays, respectively. Pathways were analyzed by CEL-Seq2 and by RT-qPCR. We demonstrated elevated COX4-2 levels in the COX4-1-deficient cells, with a concomitant HIF-1α stabilization, nuclear localization and upregulation of the hypoxia and glycolysis pathways. We suggest that COX4-2 and HIF-1α are upregulated also in normoxia as a compensatory mechanism in COX4-1 deficiency.
Hemed-Shaked M, Cowman MK, Kim JR, Huang X, Chau E, Ovadia H, Amar KO, Eshkar-Sebban L, Melamed M, Lev LB, Kedar E, Armengol J, Alemany J, Beyth S, Okon E, Kanduc D, Elgavish S, Wallach-Dayan SB, Cohen SJ, Naor D. MTADV 5-MER peptide suppresses chronic inflammations as well as autoimmune pathologies and unveils a new potential target-Serum Amyloid A [Internet]. J Autoimmun 2021;124:102713.Available from: https://pubmed.ncbi.nlm.nih.gov/34390919 PubMedDespite the existence of potent anti-inflammatory biological drugs e.g., anti-TNF and anti IL-6 receptor antibodies, for treating chronic inflammatory and autoimmune diseases, these are costly and not specific. Cheaper oral available drugs remain an unmet need. Expression of the acute phase protein Serum Amyloid A (SAA) is dependent on release of pro-inflammatory cytokines IL-1, IL-6 and TNF-α during inflammation. Conversely, SAA induces pro-inflammatory cytokine secretion, including Th17, leading to a pathogenic vicious cycle and chronic inflammation. 5- MER peptide (5-MP) MTADV (methionine-threonine-alanine-aspartic acid-valine), also called Amilo-5MER, was originally derived from a sequence of a pro-inflammatory CD44 variant isolated from synovial fluid of a Rheumatoid Arthritis (RA) patient. This human peptide displays an efficient anti-inflammatory effects to ameliorate pathology and clinical symptoms in mouse models of RA, Inflammatory Bowel Disease (IBD) and Multiple Sclerosis (MS). Bioinformatics and qRT-PCR revealed that 5-MP, administrated to encephalomyelytic mice, up-regulates genes contributing to chronic inflammation resistance. Mass spectrometry of proteins that were pulled down from an RA synovial cell extract with biotinylated 5-MP, showed that it binds SAA. 5-MP disrupted SAA assembly, which is correlated with its pro-inflammatory activity. The peptide MTADV (but not scrambled TMVAD) significantly inhibited the release of pro-inflammatory cytokines IL-6 and IL-1β from SAA-activated human fibroblasts, THP-1 monocytes and peripheral blood mononuclear cells. 5-MP suppresses the pro-inflammatory IL-6 release from SAA-activated cells, but not from non-activated cells. 5-MP could not display therapeutic activity in rats, which are SAA deficient, but does inhibit inflammations in animal models of IBD and MS, both are SAA-dependent, as shown by others in SAA knockout mice. In conclusion, 5-MP suppresses chronic inflammation in animal models of RA, IBD and MS, which are SAA-dependent, but not in animal models, which are SAA-independent.
Arnon J, Elia A, Nevo Y, Lossos A, Nechushtan H. SCLC, Paraneoplastic Dermatomyositis, Positive Transcription Intermediary Factor 1-γ, and Point Mutation in the Transcription Intermediary Factor 1-γ Coding Gene: A Case Report [Internet]. JTO Clin Res Rep 2021;2:100217.Available from: https://pubmed.ncbi.nlm.nih.gov/34590056/ PublMedSCLC is frequently associated with paraneoplastic syndromes, including dermatomyositis. Patients with malignancy-associated dermatomyositis express a specific autoantibody pattern usually positive for anti-transcription intermediary factor 1-γ (TIF1-γ), suggesting anti-TIF1-γ plays a role in development of malignancy-associated dermatomyositis. We present a case of a patient with SCLC, paraneoplastic dermatomyositis, positive anti-TIF1-γ, and a point mutation in TIF1-γ coding gene, with prominent clinical response to chemoradiation. We suggest that this point mutation is pathogenic, providing evidence for the development of paraneoplastic dermatomyositis through immune cross-reactivity.
Baker M, Petasny M, Taqatqa N, Bentata M, Kay G, Engal E, Nevo Y, Siam A, Dahan S, Salton M. KDM3A regulates alternative splicing of cell-cycle genes following DNA damage [Internet]. Rna 2021;27:1353-1362.Available from: https://pubmed.ncbi.nlm.nih.gov/34321328 PubMedChanges in the cellular environment result in chromatin structure alteration, which in turn regulates gene expression. To learn about the effect of the cellular environment on the transcriptome, we studied the H3K9 demethylase KDM3A. Using RNA-seq, we found that KDM3A regulates the transcription and alternative splicing of genes associated with cell cycle and DNA damage. We showed that KDM3A undergoes phosphorylation by PKA at serine 265 following DNA damage, and that the phosphorylation is important for proper cell-cycle regulation. We demonstrated that SAT1 alternative splicing, regulated by KDM3A, plays a role in cell-cycle regulation. Furthermore we found that KDM3A's demethylase activity is not needed for SAT1 alternative splicing regulation. In addition, we identified KDM3A's protein partner ARID1A, the SWI/SNF subunit, and SRSF3 as regulators of SAT1 alternative splicing and showed that KDM3A is essential for SRSF3 binding to SAT1 pre-mRNA. These results suggest that KDM3A serves as a sensor of the environment and an adaptor for splicing factor binding. Our work reveals chromatin sensing of the environment in the regulation of alternative splicing.