2022
Mayorek N, Schlossberg M, Mansour Y, Pillar N, Stein I, Mushasha F, Baziza G, Medvedev E, Manevitch Z, Menzel J, Aizenshtein E, Sarvin B, Sarvin N, Shlomi T, Klutstein M, Pikarsky E.
2-hydroxyglutarate controls centromere and heterochromatin conformation and function in the male germline [Internet]. bioRxiv 2022;:2022.05.29.493890.Available from:
BioRxiv2-hydroxyglutarate (2HG) is recognized as an epigenetic regulator in cancer and in a few physiological states. Of all organs, the testis harbors the highest levels of 2HG, yet it’s putative functions in germ cell biology are unknown. Here we show that 2HG is generated in specific stages of the mouse germ cell lineage by the testis specific lactate dehydrogenase C (LDHC). LDHC is expressed in pachytene, diplotene and diakinesis (PDD) cells and unexpectedly enters nuclei where it localizes along chromosomes and centromeres. LDHC-generated L-2HG controls centromere compaction and pericentromeric heterochromatin organization through multiple effects including clustering of chromocenters, centromere and chromocenter condensation and expression of satellite RNAs. The involvement of L-2HG in the above functions was shown both in isolated PDD cells and in vivo and is specific to the L but not D enantiomer. Our findings reveal that 2HG can rapidly change the conformation of these multisubunit structures and is necessary for the proper progression of the cell cycle.Competing Interest StatementThe authors have declared no competing interest.
Lasry R, Maoz N, Cheng AW, Tov NY, Kulenkampff E, Azagury M, Yang H, Ople C, Markoulaki S, Faddah DA, Makedonski K, Sabbag O, Jaenisch R, Buganim Y.
Fibroblasts-derived from Pluripotent Cells Harboring a Single Allele Knockout in Two Pluripotency Genes Exhibit DNA Methylation Abnormalities and pluripotency induction Defects [Internet]. bioRxiv 2022;:2022.05.18.492474.Available from:
BioRxivA complete knockout (KO) of a single key pluripotency gene has been shown to drastically affect embryonic stem cell (ESC) function and epigenetic reprogramming. However, knockin (KI)/KO of a reporter gene only in one of two alleles in a single pluripotency gene is considered harmless and is largely used in the stem cell field. Here, we sought to understand the impact of simultaneous elimination of a single allele in two ESC key genes on pluripotency potential and acquisition. We established multiple pluripotency systems harboring KI/KO in a single allele of two different pluripotency genes (i.e. Nanog+/-; Sall4+/-, Nanog+/-; Utf1+/-, Nanog+/-; Esrrb+/- and Sox2+/-; Sall4+/-). Interestingly, although these double heterozygous mutant lines maintain their stemness and contribute to chimeras equally to their parental control cells, fibroblasts derived from these systems show a significant reduction in their capability to induce pluripotency either by Oct4, Sox2, Klf4 and Myc (OSKM) or by nuclear transfer (NT). Tracing the expression of Sall4 and Nanog, as representative key pluripotency targeted genes, at early phases of reprogramming could not explain the seen delay/blockage. Further exploration identifies abnormal methylation landscape around pluripotent and developmental genes in the double heterozygous mutant fibroblasts. Accordingly, treatment with 5-azacytidine two days prior to transgene induction rescues the reprogramming defects. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction and suggests that insufficient levels of key pluripotency genes leads to DNA methylation abnormalities in the derived-somatic cells later on in development.Competing Interest StatementThe authors have declared no competing interest.
Kumar S, Bar-Lev L, Sharife H, Grunewald M, Mogilevsky M, Licht T, Goveia J, Taverna F, Paldor I, Carmeliet P, Keshet E.
Identification of vascular cues contributing to cancer cell stemness and function. Angiogenesis 2022;25:355-371.
Glioblastoma stem cells (GSCs) reside close to blood vessels (BVs) but vascular cues contributing to GSC stemness and the nature of GSC-BVs cross talk are not fully understood. Here, we dissected vascular cues influencing GSC gene expression and function to perfusion-based vascular cues, as well as to those requiring direct GSC-endothelial cell (EC) contacts. In light of our previous finding that perivascular tumor cells are metabolically different from tumor cells residing further downstream, cancer cells residing within a narrow, < 60 microm wide perivascular niche were isolated and confirmed to possess a superior tumor-initiation potential compared with those residing further downstream. To circumvent reliance on marker expression, perivascular GSCs were isolated from the respective locales based on their relative state of quiescence. Combined use of these procedures uncovered a large number of previously unrecognized differentially expressed GSC genes. We show that the unique metabolic milieu of the perivascular niche dominated by the highly restricted zone of mTOR activity is conducive for acquisition of GSC properties, primarily in the regulation of genes implicated in cell cycle control. A complementary role of vascular cues including those requiring direct glioma/EC contacts was revealed using glioma/EC co-cultures. Outstanding in the group of glioma cells impacted by nearby ECs were multiple genes responsible for maintaining GSCs in an undifferentiated state, a large fraction of which also relied on Notch-mediated signaling. Glioma-EC communication was found to be bidirectional, evidenced by extensive Notch-mediated EC reprogramming by contacting tumor cells, primarily metabolic EC reprogramming.
Hollander-Cohen L, Meir I, Shulman M, Levavi-Sivan B.
Identifying the Interaction of the Brain and the Pituitary in Social- and Reproductive- State of Tilapia by Transcriptome Analyses. Neuroendocrinology 2022;
INTRODUCTION: As in all vertebrates, reproduction in fish is regulated by GnRH control on gonadotrophic hormones (GtH) activity. However, the neuroendocrine factors that promote GnRH and GtH activity are unknown. In Nile tilapia (Oreochromis niloticus), sexual activity and reproduction ability depend on social rank; only dominant males and females reproduce. Here, this characteristic of dominant fish allows us to compare brain and pituitary gene expression in animals that do and do not reproduce, aiming to reveal mechanisms that regulate reproduction. METHODS: an extensive transcriptome analysis was performed, combining two sets of transcriptomes: a novel whole-brain and pituitary transcriptome of established dominant and subordinate males, together with a cell-specific transcriptome of LH and FSH cells. Pituitary incubation assay validated the direct effect of steroid application on chosen genes and GtH secretion. RESULTS: in most dominant fish, as determined behaviorally, the gonadosomatic index was higher than in subordinate fish, and the leading upregulated pituitary genes were those coding for GtHs. In the brain, various neuropeptide genes, including isotocin, cholecystokinin, and MCH, were upregulated; these may be related to reproductive status through effects on behavior and feeding. In a STRING network analysis combining the two transcriptome sets, brain aromatase, highly expressed in LH cells, is the most central gene with the highest number of connections. In the pituitary incubation assay, testosterone and estradiol increased the secretion of LH and specific gene transcription. CONCLUSIONS: the close correlation between behavioral dominance and reproductive capacity in tilapia allows unraveling novel genes that may regulate the HPG axis, highlighting aromatase as the main factor affecting the brain and pituitary in maintaining a sexually active organism.
Barsheshet M, Fisher S, Margalit H.
Inferring the contribution of small RNAs to changes in gene expression in response to stress. NAR Genom Bioinform 2022;4:lqac015.
A main strategy of bacteria adapting to environmental changes is the remodeling of their transcriptome. Changes in the transcript levels of specific genes are due to combined effects of various regulators, including small RNAs (sRNAs). sRNAs are post-transcriptional regulators of gene expression that mainly control translation, but also directly and indirectly affect the levels of their target transcripts. Yet, the relative contribution of an sRNA to the total change in the transcript level of a gene upon an environmental change has not been assessed. We present a design of differential gene expression analysis by RNA-seq that allows extracting the contribution of an sRNA to the total change in the transcript level of each gene in response to an environmental change by fitting a linear model to the data. We exemplify this for the sRNA RyhB in cells growing under iron limitation and show a variation among genes in the relative contribution of RyhB to the change in their transcript level upon iron limitation, from subtle to very substantial. Extracting the relative contribution of an sRNA to the total change in expression of genes is important for understanding the integration of regulation by sRNAs with other regulatory mechanisms in the cell.
Arafat M, Sperling R.
A Quality Control Mechanism of Splice Site Selection Abrogated under Stress and in Cancer. Cancers (Basel) 2022;14
Latent 5' splice sites, highly abundant in human introns, are not normally used. This led to the proposal of a quality control mechanism, Suppression of Splicing (SOS), which protects cells from splicing at the numerous intronic latent sites, and whose activation can generate nonsense mRNAs. SOS was shown to be independent of Nonsense-Mediated mRNA Decay (NMD). Efforts to decipher the SOS mechanism revealed a pivotal role for initiator-tRNA, independent of protein translation. Recently, nucleolin (a multifunctional protein) was found to directly and specifically bind the initiator-tRNA in the nucleus and was shown to be a protein component of SOS, enabling an updated model of the SOS mechanism. Importantly, SOS is abrogated under stress and in cancer (e.g., in breast cancer cells and gliomas), generating thousands of nonsense mRNAs due to activation of latent splicing. The resulting affected human genes cover a variety of functional groups, including genes involved in cell proliferation and differentiation. Furthermore, in oligodendroglioma, the extent of activation of latent splicing increases with the severity of the cancer. Interesting examples are genes expressing aberrant nonsense mRNAs in both breast cancer and glioma, due to latent splicing activation. These findings highlight the unexplored potential of such aberrant isoforms as novel targets for cancer diagnosis and therapies.
Basu P, Altuvia S.
RelA binding of mRNAs modulates translation or sRNA-mRNA basepairing depending on the position of the GGAG site. Mol Microbiol 2022;117:143-159.
Previously, we reported that RelA protein facilitates Hfq-mediated mRNA-sRNA regulation by binding sRNAs carrying a Shine-Dalgarno-like GGAG sequence. In turn, sRNA-Hfq monomers are stabilized, enabling the attachment of more Hfq subunits to form a functional hexamer. Here, using CLIP-seq, we present a global analysis of RelA-bound RNAs showing that RelA interacts with sRNAs as well as with mRNAs carrying a GGAG motif. RelA binding of mRNAs carrying GGAG at position -7 relative to the initiation codon (AUG) inhibits translation by interfering with the binding of 30S ribosomes. The extent of inhibition depends on the distance of GGAG relative to the AUG, as shortening the spacing between GGAG and AUG abrogates RelA-mediated inhibition. Interestingly, RelA binding of target mRNAs carrying GGAG in the coding sequence or close to AUG facilitates target gene regulation by sRNA partners that lack GGAG. However, translation inhibition caused by RelA binding of mRNAs carrying GGAG at position -7 relative to the AUG renders sRNA-mRNA basepairing regulation ineffective. Our study indicates that by binding RNAs carrying GGAG the ribosome-associated RelA protein inhibits translation of specific newly synthesized incoming mRNAs or enables basepairing regulation by their respective sRNA partners, thereby introducing a new regulatory concept for the bacterial response.
Bogoch Y, Jamieson-Lucy A, Vejnar CE, Levy K, Giraldez AJ, Mullins MC, Elkouby YM.
Stage Specific Transcriptomic Analysis and Database for Zebrafish Oogenesis. Front Cell Dev Biol 2022;10:826892.
Oogenesis produces functional eggs and is essential for fertility, embryonic development, and reproduction. The zebrafish ovary is an excellent model to study oogenesis in vertebrates, and recent studies have identified multiple regulators in oocyte development through forward genetic screens, as well as reverse genetics by CRISPR mutagenesis. However, many developmental steps in oogenesis, in zebrafish and other species, remain poorly understood, and their underlying mechanisms are unknown. Here, we take a genomic approach to systematically uncover biological activities throughout oogenesis. We performed transcriptomic analysis on five stages of oogenesis, from the onset of oocyte differentiation through Stage III, which precedes oocyte maturation. These transcriptomes revealed thousands of differentially expressed genes across stages of oogenesis. We analyzed trends of gene expression dynamics along oogenesis, as well as their expression in pair-wise comparisons between stages. We determined their functionally enriched terms, identifying uniquely characteristic biological activities in each stage. These data identified two prominent developmental phases in oocyte differentiation and traced the accumulation of maternally deposited embryonic regulator transcripts in the developing oocyte. Our analysis provides the first molecular description for oogenesis in zebrafish, which we deposit online as a resource for the community. Further, the presence of multiple gene paralogs in zebrafish, and the exclusive curation by many bioinformatic tools of the single paralogs present in humans, challenge zebrafish genomic analyses. We offer an approach for converting zebrafish gene name nomenclature to the human nomenclature for supporting genomic analyses generally in zebrafish. Altogether, our work provides a valuable resource as a first step to uncover oogenesis mechanisms and candidate regulators and track accumulating transcripts of maternal regulators of embryonic development.
Zlotnik D, Rabinski T, Halfon A, Anzi S, Plaschkes I, Benyamini H, Nevo Y, Gershoni OY, Rosental B, Hershkovitz E, Ben-Zvi A, Vatine GD.
P450 oxidoreductase regulates barrier maturation by mediating retinoic acid metabolism in a model of the human BBB. Stem Cell Reports 2022;
The blood-brain barrier (BBB) selectively regulates the entry of molecules into the central nervous system (CNS). A crosstalk between brain microvascular endothelial cells (BMECs) and resident CNS cells promotes the acquisition of functional tight junctions (TJs). Retinoic acid (RA), a key signaling molecule during embryonic development, is used to enhance in vitro BBB models' functional barrier properties. However, its physiological relevance and affected pathways are not fully understood. P450 oxidoreductase (POR) regulates the enzymatic activity of microsomal cytochromes. POR-deficient (PORD) patients display impaired steroid homeostasis and cognitive disabilities. Here, we used both patient-specific POR-deficient and CRISPR-Cas9-mediated POR-depleted induced pluripotent stem cell (iPSC)-derived BMECs (iBMECs) to study the role of POR in the acquisition of functional barrier properties. We demonstrate that POR regulates cellular RA homeostasis and that POR deficiency leads to the accumulation of RA within iBMECs, resulting in the impaired acquisition of TJs and, consequently, to dysfunctional development of barrier properties.
Vorontsov O, Levitt L, Lilleri D, Vainer GW, Kaplan O, Schreiber L, Arossa A, Spinillo A, Furione M, Alfi O, Oiknine-Djian E, Kupervaser M, Nevo Y, Elgavish S, Yassour M, Zavattoni M, Bdolah-Abram T, Baldanti F, Geal-Dor M, Zakay-Rones Z, Yanay N, Yagel S, Panet A, Wolf DG.
Amniotic fluid biomarkers predict the severity of congenital cytomegalovirus infection [Internet]. J Clin Invest 2022;132Available from:
PubMedBACKGROUNDCytomegalovirus (CMV) is the most common intrauterine infection, leading to infant brain damage. Prognostic assessment of CMV-infected fetuses has remained an ongoing challenge in prenatal care, in the absence of established prenatal biomarkers of congenital CMV (cCMV) infection severity. We aimed to identify prognostic biomarkers of cCMV-related fetal brain injury.METHODSWe performed global proteome analysis of mid-gestation amniotic fluid samples, comparing amniotic fluid of fetuses with severe cCMV with that of asymptomatic CMV-infected fetuses. The levels of selected differentially excreted proteins were further determined by specific immunoassays.RESULTSUsing unbiased proteome analysis in a discovery cohort, we identified amniotic fluid proteins related to inflammation and neurological disease pathways, which demonstrated distinct abundance in fetuses with severe cCMV. Amniotic fluid levels of 2 of these proteins - the immunomodulatory proteins retinoic acid receptor responder 2 (chemerin) and galectin-3-binding protein (Gal-3BP) - were highly predictive of the severity of cCMV in an independent validation cohort, differentiating between fetuses with severe (n = 17) and asymptomatic (n = 26) cCMV, with 100%-93.8% positive predictive value, and 92.9%-92.6% negative predictive value (for chemerin and Gal-3BP, respectively). CONCLUSIONAnalysis of chemerin and Gal-3BP levels in mid-gestation amniotic fluids could be used in the clinical setting to profoundly improve the prognostic assessment of CMV-infected fetuses.FUNDINGIsrael Science Foundation (530/18 and IPMP 3432/19); Research Fund - Hadassah Medical Organization.
Stokar J, Gurt I, Cohen-Kfir E, Yakubovsky O, Hallak N, Benyamini H, Lishinsky N, Offir N, Tam J, Dresner-Pollak R.
Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice [Internet]. Mol Metab 2022;60:101482.Available from:
PubMedOBJECTIVE: Menopause is associated with visceral adiposity, hepatic steatosis and increased risk for cardiovascular disease. As estrogen replacement therapy is not suitable for all postmenopausal women, a need for alternative therapeutics and biomarkers has emerged. METHODS: 9-week-old C57BL/6 J female mice were subjected to ovariectomy (OVX) or SHAM surgery (n = 10 per group), fed a standard diet and sacrificed 6- & 12 weeks post-surgery. RESULTS: Increased weight gain, hepatic triglyceride content and changes in hepatic gene expression of Cyp17a1, Rgs16, Fitm1 as well as Il18, Rares2, Retn, Rbp4 in mesenteric visceral adipose tissue (VAT) were observed in OVX vs. SHAM. Liver RNA-sequencing 6-weeks post-surgery revealed changes in genes and microRNAs involved in fat metabolism in OVX vs. SHAM mice. Energy Homeostasis Associated gene (Enho) coding for the hepatokine adropin was significantly reduced in OVX mice livers and strongly inversely correlated with weight gain (r = -0.7 p < 0.001) and liver triglyceride content (r = -0.4, p = 0.04), with a similar trend for serum adropin. In vitro, Enho expression was tripled by 17β-estradiol in BNL 1 ME liver cells with increased adropin in supernatant. Analysis of open-access datasets revealed increased hepatic Enho expression in estrogen treated OVX mice and estrogen dependent ERα binding to Enho. Treatment of 5-month-old OVX mice with Adropin (i.p. 450 nmol/kg/twice daily, n = 4,5 per group) for 6-weeks reversed adverse adipokine gene expression signature in VAT, with a trended increase in lean body mass and decreased liver TG content with upregulation of Rgs16. CONCLUSIONS: OVX is sufficient to induce deranged metabolism in adult female mice. Hepatic adropin is regulated by estrogen, negatively correlated with adverse OVX-induced metabolic phenotypes, which were partially reversed with adropin treatment. Adropin should be further explored as a potential therapeutic target and biomarker for menopause-related metabolic derangement.
Shore T, Levi T, Kalifa R, Dreifuss A, Rekler D, Weinberg-Shukron A, Nevo Y, Bialistoky T, Moyal V, Gold MY, Leebhoff S, Zangen D, Deshpande G, Gerlitz O.
Nucleoporin107 mediates female sexual differentiation via Dsx [Internet]. Elife 2022;11Available from:
PubMedWe recently identified a missense mutation in Nucleoporin107 (Nup107; D447N) underlying XX-ovarian-dysgenesis, a rare disorder characterized by underdeveloped and dysfunctional ovaries. Modeling of the human mutation in Drosophila or specific knockdown of Nup107 in the gonadal soma resulted in ovarian-dysgenesis-like phenotypes. Transcriptomic analysis identified the somatic sex-determination gene doublesex (dsx) as a target of Nup107. Establishing Dsx as a primary relevant target of Nup107, either loss or gain of Dsx in the gonadal soma is sufficient to mimic or rescue the phenotypes induced by Nup107 loss. Importantly, the aberrant phenotypes induced by compromising either Nup107 or dsx are reminiscent of bone morphogenetic protein (BMP signaling hyperactivation). Remarkably, in this context, the metalloprotease AdamTS-A, a transcriptional target of both Dsx and Nup107, is necessary for the calibration of BMP signaling. As modulation of BMP signaling is a conserved critical determinant of soma-germline interaction, the sex- and tissue-specific deployment of Dsx-F by Nup107 seems crucial for the maintenance of the homeostatic balance between the germ cells and somatic gonadal cells.
Rosenberg N, Van Haele M, Lanton T, Brashi N, Bromberg Z, Adler H, Giladi H, Peled A, Goldenberg DS, Axelrod JH, Simerzin A, Chai C, Paldor M, Markezana A, Yaish D, Shemulian Z, Gross D, Barnoy S, Gefen M, Amran O, Claerhout S, Fernandez-Vaquero M, Garcia-Beccaria M, Heide D, Shoshkes-Carmel M, Schmidt Arras D, Elgavish S, Nevo Y, Benyamini H, Tirnitz-Parker JEE, Sanchez A, Herrera B, Safadi R, Kaestner KH, Rose-John S, Roskams T, Heikenwalder M, Galun E.
Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL6 trans-signaling [Internet]. J Hepatol 2022;Available from:
PubMedBACKGROUND AND AIMS: Primary liver cancers include: Hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors. METHOD: To trace progenitor cells during hepatocarcinogenesis, we generated Mdr2-KO mice that harbor an YFP reporter gene driven by the Foxl1 promoter which is expressed specifically in progenitor cells. These mice (Mdr2-KO(Foxl1-CRE;RosaYFP)) develop chronic inflammation and HCCs by the age of 14-16 months, followed by cHCC-CCA tumors at the age of 18 months, as we have first observed. RESULTS: In this Mdr2-KO(Foxl1-CRE;RosaYFP) mouse model, liver progenitor cells are the source of cHCC-CCA tumors, but not the source of HCC. Ablating the progenitors, caused reduction of cHCC-CCA tumors but did not affect HCCs. RNA-seq revealed enrichment of the IL6 signaling pathway in cHCC-CCA tumors compared to HCC tumors. ScRNA-seq analysis revealed that IL6 is expressed from immune and parenchymal cells in senescence, and that IL6 is part of the senescence-associated secretory phenotype (SASP). Administration of anti-IL6 Ab to Mdr2-KO(Foxl1-CRE;RosaYFP) mice, inhibited the development of cHCC-CCA tumors. By blocking IL6 trans-signaling, cHCC-CCA tumors decreased in number and size, indicating that cHCC-CCA is dependent on IL6 trans-signaling. Furthermore, the administration of a senolytic agent inhibited IL6 and the development of cHCC-CCA tumors. CONCLUSION: Our results demonstrate that cHCC-CCA, but not HCC tumors, originate from HPCs, and that IL6, which derives in part from cells in senescence, plays an important role in this process via IL6 trans-signaling. These findings could enhance new therapeutic approaches for cHCC-CCA liver cancer. LAY SUMMARY: Combined hepatocellular carcinoma - cholangiocarcinoma is the third prevalent liver cancer. We show that the source of this tumor is the liver tissue stem cells and that, this tumor type is dependent on an inflammatory signaling of IL6 and can be inhibited by blocking IL6 signaling or using a senolytic agent.
Kolodkin-Gal D, Roitman L, Ovadya Y, Azazmeh N, Assouline B, Schlesinger Y, Kalifa R, Horwitz S, Khalatnik Y, Hochner-Ger A, Imam A, Demma JA, Winter E, Benyamini H, Elgavish S, Khatib AA, Meir K, Atlan K, Pikarsky E, Parnas O, Dor Y, Zamir G, Ben-Porath I, Krizhanovsky V.
Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions [Internet]. Gut 2022;71:345-355.Available from:
PubMedOBJECTIVE: Cellular senescence limits tumourigenesis by blocking the proliferation of premalignant cells. Additionally, however, senescent cells can exert paracrine effects influencing tumour growth. Senescent cells are present in premalignant pancreatic intraepithelial neoplasia (PanIN) lesions, yet their effects on the disease are poorly characterised. It is currently unknown whether senolytic drugs, aimed at eliminating senescent cells from lesions, could be beneficial in blocking tumour development. DESIGN: To uncover the functions of senescent cells and their potential contribution to early pancreatic tumourigenesis, we isolated and characterised senescent cells from PanINs formed in a Kras-driven mouse model, and tested the consequences of their targeted elimination through senolytic treatment. RESULTS: We found that senescent PanIN cells exert a tumour-promoting effect through expression of a proinflammatory signature that includes high Cox2 levels. Senolytic treatment with the Bcl2-family inhibitor ABT-737 eliminated Cox2-expressing senescent cells, and an intermittent short-duration treatment course dramatically reduced PanIN development and progression to pancreatic ductal adenocarcinoma. CONCLUSIONS: These findings reveal that senescent PanIN cells support tumour growth and progression, and provide a first indication that elimination of senescent cells may be effective as preventive therapy for the progression of precancerous lesions.
Paldor M, Levkovitch-Siany O, Eidelshtein D, Adar R, Enk CD, Marmary Y, Elgavish S, Nevo Y, Benyamini H, Plaschkes I, Klein S, Mali A, Rose-John S, Peled A, Galun E, Axelrod JH.
Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis [Internet]. EMBO Mol Med 2022;14:e15653.Available from:
PubMedIrradiation-induced alopecia and dermatitis (IRIAD) are two of the most visually recognized complications of radiotherapy, of which the molecular and cellular basis remains largely unclear. By combining scRNA-seq analysis of whole skin-derived irradiated cells with genetic ablation and molecular inhibition studies, we show that senescence-associated IL-6 and IL-1 signaling, together with IL-17 upregulation and CCR6(+) -mediated immune cell migration, are crucial drivers of IRIAD. Bioinformatics analysis colocalized irradiation-induced IL-6 signaling with senescence pathway upregulation largely within epidermal hair follicles, basal keratinocytes, and dermal fibroblasts. Loss of cytokine signaling by genetic ablation in IL-6(-/-) or IL-1R(-/-) mice, or by molecular blockade, strongly ameliorated IRIAD, as did deficiency of CCL20/CCR6-mediated immune cell migration in CCR6(-/-) mice. Moreover, IL-6 deficiency strongly reduced IL-17, IL-22, CCL20, and CCR6 upregulation, whereas CCR6 deficiency reciprocally diminished IL-6, IL-17, CCL3, and MHC upregulation, suggesting that proximity-dependent cellular cross talk promotes IRIAD. Therapeutically, topical application of Janus kinase blockers or inhibition of T-cell activation by cyclosporine effectively reduced IRIAD, suggesting the potential of targeted approaches for the treatment of dermal side effects in radiotherapy patients.
Heinberg A, Amit-Avraham I, Mitesser V, Simantov K, Goyal M, Nevo Y, Kandelis-Shalev S, Thompson E, Dzikowski R.
A nuclear redox sensor modulates gene activation and var switching in Plasmodium falciparum [Internet]. Proc Natl Acad Sci U S A 2022;119:e2201247119.Available from:
PubMedThe virulence of Plasmodium falciparum, which causes the deadliest form of human malaria, is attributed to its ability to evade the human immune response. These parasites "choose" to express a single variant from a repertoire of surface antigens called PfEMP1, which are placed on the surface of the infected red cell. Immune evasion is achieved by switches in expression between var genes, each encoding a different PfEMP1 variant. While the mechanisms that regulate mutually exclusive expression of var genes are still elusive, antisense long-noncoding RNAs (lncRNAs) transcribed from the intron of the active var gene were implicated in the "choice" of the single active var gene. Here, we show that this lncRNA colocalizes with the site of var mRNA transcription and is anchored to the var locus via DNA:RNA interactions. We define the var lncRNA interactome and identify a redox sensor, P. falciparum thioredoxin peroxidase I (PfTPx-1), as one of the proteins associated with the var antisense lncRNA. We show that PfTPx-1 localizes to a nuclear subcompartment associated with active transcription on the nuclear periphery, in ring-stage parasite, when var transcription occurs. In addition, PfTPx-1 colocalizes with S-adenosylmethionine synthetase (PfSAMS) in the nucleus, and its overexpression leads to activation of var2csa, similar to overexpression of PfSAMS. Furthermore, we show that PfTPx-1 knockdown alters the var switch rate as well as activation of additional gene subsets. Taken together, our data indicate that nuclear PfTPx-1 plays a role in gene activation possibly by providing a redox-controlled nuclear microenvironment ideal for active transcription.
Douiev L, Miller C, Keller G, Benyamini H, Abu-Libdeh B, Saada A.
Replicative Stress Coincides with Impaired Nuclear DNA Damage Response in COX4-1 Deficiency [Internet]. Int J Mol Sci 2022;23Available from:
PubMedCytochrome c oxidase (COX), a multimeric protein complex, is the final electron acceptor in the mitochondrial electron transfer chain. Primary COX deficiency, caused by mutations in either mitochondrial DNA or nuclear-encoded genes, is a heterogenous group of mitochondrial diseases with a wide range of presentations, ranging from fatal infantile to subtler. We previously reported a patient with primary COX deficiency due to a pathogenic variant in COX4I1 (encoding the common isoform of COX subunit 4, COX4-1), who presented with bone marrow failure, genomic instability, and short stature, mimicking Fanconi anemia (FA). In the present study, we demonstrated that accumulative DNA damage coincided primarily with proliferative cells in the patient's fibroblasts and in COX4i1 knockdown cells. Expression analysis implicated a reduction in DNA damage response pathways, which was verified by demonstrating impaired recovery from genotoxic insult and decreased DNA repair. The premature senescence of the COX4-1-deficient cells prevented us from undertaking additional studies; nevertheless, taken together, our results indicate replicative stress and impaired nuclear DNA damage response in COX4-1 deficiency. Interestingly, our in vitro findings recapitulated the patient's presentation and present status.